
Strong Normalization of Second
Order Symmetric Lambda-mu Calculus

Yoriyuki Yamagata

Department of Mathematical Science, University of Tokyo
yoriyuki@ms.u-tokyo.ac.jp

Abstract. Parigot suggested symmetric structural reduction rules for
application to µ-abstraction in [9] to ensure unique representation of
data type. We prove strong normalization of second order λµ-calculus
with these rules.

1 Introduction

Originally, λµ-calculus was defined to clarify correspondence between classical
logic and control operators in functional programming languages. In this respect,
λµ-calculus seems quite successful [5] [6] [7] [12]. In fact, λµ-calculus can be seen
as an extension of λ-calculus equipped with variables, binding construct and
application for continuation [12]. This makes λµ-calculus suitable for the study
of programming languages.

In addition, Parigot was also motivated in [8] by possibility of witness ex-
traction from classical proofs of Σ0

1 -sentences. Unfortunately, reduction rules of
λµ-calculus seems not sufficient for this purpose. For example, let A(x) be an
atomic formula of arithmetic and A′(x) be its code in second order predicate
logic. We represent ∃x.A(x) as ∀X.∀x(A(x) → X) → X in second order lan-
guage, where X is a variable over propositions. We expect that a closed normal
deduction of ∃x.A′(x) somehow contains a unique first order term t such that
A(t) holds. However, consider the following situation. Suppose that A(t) holds
but A(u) does not hold. Let M be a deduction of A′(t) represented as λµ-terms.
ΛX.λα.µβ.[β]αu(µγ.[β]αtM) is a closed and normal deduction of ∃xA′(x) but
apparently contains two terms t, u. Moreover, u is not a witness of ∃xA(x).
This suggests that we need additional reduction to extract the witness. In fact,
Parigot proposed addition of new reduction rules (symmetric structural reduc-
tion) M(µα.N)⇒ µβ.N [M∗/α] to solve similar problem on normal forms of the
natural number type. N [M∗/α] is defined by inductively replacing all occurrence
of [α]L in N to [α]M(L[M∗/α]). We will present a new calculus from which rules
above can be derivable, and prove that it suffices to ensure that a closed normal
term of type ∃xA(x) for an atomic A(x) contains one and only one first order
term t and A(t) holds. While numerous works on computational interpretation
of classical proof are done, properties of normal form does not seem so well un-
derstood. Barbanera and Berardi shows that in symmetric lambda calculus for

first order Peano arithmetic, closed normal forms of this calculus consist of in-
troduction rules alone [3]. In addition to this work, we have to mention Parigot’s
work on output operators, which extract church numeral from classical proof of
inhabitance of natural number type [9]. Danos et al. applied this technique to
second order sequent calculus and show that it can be used for witness extrac-
tion from proofs of Σ0

1 -formulae [4]. Our work could be seen a sequel to these
studies.

Obviously, to use such calculus for witness extraction, we need normalization
property of it. In addition, if we expect that reduction rules fully specify extrac-
tion algorithm of witness, strong normalization is desirable. However, symmetric
nature of reduction of application to µ-abstraction seems to prevent direct adap-
tion of the proof of strong normalization of original λµ-calculus [10]. Luke Ong
and Charles Stewart addressed strong normalization of a calculus with call-by-
value restriction of symmetric structural reduction rules [7]. Their calculus λµv
is confluent, hence useful as a programming language, in contrast to our calcu-
lus. However, imposing reduction strategy seems to be an alien idea in a logical
calculus. Non-confluency is come from unrestricted use of symmetric structural
rules, hence essential feature of such calculus.

Barbanera and Berardi proved strong normalization of a non-deterministic
calculus for propositional classical logic using fixed point construction for re-
ducibility candidates [2]. We will prove strong normalization of second order
λµ-calculus with the rules above based on this method.

2 Symmetric λµ-calculus

Our formalization is a second order extension of symmetric λµ-calculus in [11].
Usually, a term of λµ-calculus is understood as a proof with multiple conclu-
sions. On the contrary, we consider a λµ-term as a proof with a single conclu-
sion but two kinds of hypothesis, ordinary hypothesis and denials of proposi-
tions, which correspond conclusions other than a principal formula in usual λµ-
calculus. Moreover, we do not distinguish λ-variables and µ-variables. x, y, x1, · · ·
and t, u, t1, · · · stand for first order variables and terms. Xn, Y n, Xn

i and denotes
n-ary predicate variables.

Definition 1. The set of first order term consists of a constant 0, unary func-
tion S, and function symbols f for all primitive recursive function on natural
numbers. A proposition is that of second order predicate logic built up by equality
=, predicate variables Xn

i and logical connectives →, ∀. Formally,

A ::= t1 = t2 | Xn
i t1 · · · tn | A→ A | ∀xiA | ∀Xn

i A.

A formula is a proposition A or a denial •A of proposition or contradiction ⊥.
Note that ⊥ is not counted as a proposition. Other connectives are defined by us-
ing second order construct. For example, ∃x.A(x) is defined as ∀X0.∀x(A(x)→
X0)→ X0 and A ∧B as ∀X0.(A→ B → X)→ X.

Definition 2. An abstraction term T is a form λx1 · · ·xn.A for a proposition
A. Substitution B[T/Xn] of T for a predicate variable Xn in B is defined by
replacing each occurrences of Xnt1 · · · tn whose Xn is a free variable in B, to
A[t1, · · · , tn/x1, · · · , xn].

Definition 3. The set of axioms consists of equality axioms, defining axioms
for primitive recursive functions and the proposition S0 = 0→ ∀X.X. We note
that equality axioms and defining axioms can be formulated as atomic rules, that
is the set of formulae of forms A1 → A2 → · · · → An with atomic formula
Ai. This constraint is relevant to the fact that a closed term of type of atomic
formula without µ consists of axiom alone.

Definition 4. λµ-terms of type A are given by followings rules. (In the figure,
t : A means t have the type A.) For each formula A, λµ-terms of type A are
defined inductively as follows. We denote variable by Greek letters α, β, · · ·.

axiomi : A

[αC]

α : C

M : •A N : A
[]

[M]N : ⊥

[αA]
···

M : ⊥
µ

µα.M : •A

[α•A]
···

M : ⊥
µ

µα.M : A

M : A→ B N : A
app.

MN : B

[αA]
···

M : B
λ

λα.M : A→ B

M : ∀xA
app.1

Mt : A[t/x]

M : A
λ1

λx.M : ∀xA

M : ∀XA
app.2

MT : A[T/X]

M : A
λ2

λX.M : ∀xA

In the above rules λ1, λ2, the derivation of M does not contains x or X as free
variables.

Remark 1. Well typed terms of Parigot’s λµ-calculus can be translated to the
calculus above, by replacing µ-variables of type A to variables of type •A.

Remark 2. The reason of “Church style formulation”, that is, incorporating typ-
ing information as a part of term, is that in the proof of strong normalization,
we seems to need the fact that each term has a unique type.

Definition 5. Reduction rules are the followings. Let β, γ, δ be fresh variables.

(λ1) (λα.M)N ⇒M [N/α]
(λ2) (λx.M)t ⇒M [t/x]
(λ3) (λXn.M)T ⇒M [T/Xn]
(µ) [M]µα.N ⇒ N [M/α] [µα.M]N ⇒M [N/α]
(ζ1) (µα.M)N ⇒ µβ.M [µγ.[β](γN)/α] M(µα.N)⇒ µβ.N [µγ.[β](Mγ)/α]
(ζ2) (µα.M)t ⇒ µβ.M [µγ.[β](γt)/α]
(ζ3) (µα.M)T ⇒ µβ.M [µγ.[β](γT)/α]

As usual, compatible closure of the rules above is called one-step reduction
relation (denoted⇒1) and reflexive and transitive closure of one-step reduction is
called reduction relation (denoted⇒). w(M) is the maximal length of sequences
M ⇒1 M1 · · · ⇒1 Mn if the maximum exists. Otherwise w(M) is undefined. M
is strongly normalizable if and only if w(M) is defined.

Using µ and ζ-rules, Parigot’s structural reduction [8] and symmetric one [9]
mentioned in Section 1 can be derived.

(µα. ...[α]N...)L⇒ζ µβ. ...[µγ.[β](γL)]N...⇒µ µβ. ...[β](NL)...

N(µα. ...[α]L...)⇒ζ µβ. ...[µγ.[β](Nγ)]L...⇒µ µβ. ...[β](NL)...

If we understand • as the usual negation symbol, our ζ-rules resemble to Andou’s
reduction for ⊥c [1].

3 Extraction of witnesses from Σ0
1-formulae

Let N(x) be the formula ∀X1.X10 → ∀x(X1x → X1Sx) → X1x. It is well
known that we can encode the second order Peano arithmetic into second order
predicate logic as presented above. Σ0

1 -sentences are represented as ∃xN(x) ∧
A(x). Since ∃xA(x) is derivable from such formula, we extract a witness from
the proof of the formula ∃xA(x).

Definition 6. I-context EI [] is a context defined by the following grammar.

I[] ::= λα.EI [] | λx.EI [] | λX.EI []

EI [] ::= [] | I[] | µα.[β]I[]

Definition 7. For a proposition A, α(A), β(A) and γ(A) are defined as follows.
α(A) is the set of formulae {A} for atomic A and {A} ∪ α(A2) for the case
A ≡ A1 → A2,∀xA2,∀XA2. β(A) is the set of formulae {•A} for atomic A,
{•A} ∪ β(A1) for A ≡ ∀xA1,∀XA1 and {A1} ∪ {•A} ∪ β(A2) for A ≡ A1 →
A2. γ(A) is the set of variables ∅ for atomic A, {x} ∪ γ(A1) for A ≡ ∀xA1,
{X} ∪ γ(A1) for A ≡ ∀XA1, γ(A2) for A ≡ A1 → A2. For a set S of formulae,
α(S) =

⋃
A∈S α(A). β(S), γ(S) are defined similarly. Note that S ⊂ α(S) and if

B ∈ α(A) then α(B) ⊂ α(A).

Lemma 1. Let EI [M] be a term of type A with free variables of type A1, · · · , Am
(usual propositions) and •B1, · · · , •Bn (denials). Then, the type of M is an el-
ement of α({A,B1, · · · , Bn}), types of free variables are contained in the set
{A1, · · · , Am} ∪ β({A,B1, · · · , Bn}). Free first order and predicate variable con-
tained in M are those of EI [M] or elements of γ(A).

Proof. By induction on construction of EI [M].

Lemma 2. All normal forms of λµ-term have forms EI [αM1 · · ·Mn].

Proof. By induction on construction of a term.

Proposition 1. Let A(x) be an atomic formula and M be a normal closed term
of type ∃xA(x). M contains one and only one first order term t and A(t) holds.

Proof. By Lemma 2 and considering β(∃xA(x)), together with consistency of the
calculus, we see that M has a form EI [αtK] where α has type ∀x(A(x) → X),
t is a first order term and K is a term of type A(t). Since K can not begin
with µ, and whose type is atomic, K ≡ K1K2 · · ·Km. K1 is either a variable
of type ∀x(A(x) → X) or axioms, but ∀x(A(x) → X) is impossible since A(x)
does not contain X as a free variable. Hence K1 is an axiom and types of all
of K2, · · · ,Km are atomic. By similar argument to K, K2, · · · ,Km have a form
of application to axioms. Repeatedly applying this argument, we can conclude
that K consists of axioms alone.

4 Strong normalization

This section is devoted to the proof of strong normalization theorem.

Definition 8. First we prepare several notations.

1. A term beginning with µ is called a µ-form.
2. For a set S of terms of type C, Cl(S) is defined as the smallest set which

satisfies clauses
(a) S ⊂ Cl(S) and contains all variables of type C.
(b) MN ∈ Cl(S) if L ∈ Cl(S) for all L such that MN ⇒1 L.
(c) Mt ∈ Cl(S) if L ∈ Cl(S) for all L such that Mt⇒1 L for a first order

term t.
(d) MT ∈ Cl(S) if L ∈ Cl(S) for all L such that MT ⇒1 L for an abstrac-

tion term T .
3. The set of strongly normalizable terms of type ⊥ is also denoted ⊥.
4. For a set S of terms of type C 6= ⊥,

•S := {µα.M |∀N ∈ S,M [N/α] ∈ ⊥}

where α is a variable of type C and M has a type ⊥.

5. the operator D(X) is defined as Cl(X ∪ • • X). Note that •• and hence D
are monotone operators. For ordinal κ,

Dκ(X) := D(
⋃
τ<κ

Dτ (X)).

Definition 9 (Reducibility candidates). Let ω1 be the first uncountable or-
dinal and A be a proposition. Let S be a set of strongly normalizable terms of
type A. Suppose S does not contain a µ-form and S is closed under reduction
relation. Then, a set Dω1(S) is called a reducibility candidate of the proposition
A. Note that from monotonicity of D, a reducibility candidate is a fixed point of
D. The set of candidates of the proposition A is denoted by RA. R is the union
of all RA.

Lemma 3. Let R be a reducibility candidate. Then the followings hold.

1. All terms in R are strongly normalizable.
2. R = Cl(S ∪ • • R).
3. For M ∈ •R and N ∈ R, [M]N ∈ ⊥

Proof. The clause 1 follows from induction on ω1.
Since R is a fixed point of D, we have R = Cl(R ∪ • • R) ⊃ Cl(S ∪ • • R),

while Dκ(S) ⊂ Cl(S ∪ • • R). We have the clause 2.
To prove the clause 3, it suffices to prove that all L such that [M]N ⇒1 L

are strongly normalizable. The proof is induction on w(M)+w(N). We consider
each possibility of the reduction of [M]N .

The case where L has the form [M ′]N ′ and M ⇒ M ′ and N ⇒ N ′. The
thesis follows from induction hypothesis on w(M) + w(N).

The case where M ≡ µα.M1 and L ≡M1[N/α]. By the hypothesis M ∈ •R.
The case where N ≡ µα.N1 and L ≡ N1[M/α]. By Lemma 3, N should be

an element of • • R. We have the thesis.

Definition 10. Let A ∈ RA and B ∈ RB. Assume that (ti)i∈I is a non-empty
family of first order terms and (Tj)j∈J is a non-empty family of abstraction
terms. Further, Ai is a candidate of the proposition A[ti/x] for each i ∈ I and
Aj is a candidate of the proposition A[Tj/X] for each j ∈ J . Candidates A → B∧1
i∈I Ai,

∧2
j∈J Aj are defined by the following steps.

L(A,B) := {λαA.M |∀N ∈ A,M [N/αA] ∈ B} (1)
Π1
i∈IAi := {λx.M |∀i ∈ I,M [ti/x] ∈ Ai} (2)

Π2
j∈JAj := {λX.M |∀j ∈ J,M [Tj/X] ∈ Aj} (3)
A → B := Dω1(L(A,B)) (4)

1∧
i∈I
Ai := Dω1(Π1

i∈IAi) (5)

2∧
j∈J
Ai := Dω1(Π2

j∈JAi) (6)

Lemma 4. Let A ∈ RA and B ∈ RB. If M ∈ A → B and N ∈ A, MN ∈ B.

Proof. Let A = Dω1(S). Assume that κ is the least ordinal such that M ∈
Dκ(L(A,B)) and τ is the least ordinal such that N ∈ Dτ (S). By induction on
the natural sum κ ⊕ τ and w(M) + w(N), we will prove that if MN ⇒1 L,
L ∈ B, which is the exact condition of MN ∈ B.

The case L ≡ M ′N ′ and either M ⇒1 M
′ and N ≡ N ′ or M ≡ M ′ and

N ⇒1 N
′. The thesis follows from induction hypothesis on w(M) + w(N).

The case M ≡ λα.M1 and L ≡ M1[N/α]. Since M ∈ L(A,B), we have the
thesis.

The case where M has a form µα.M1 and L is obtained from reduction of
the outermost redex. Then, L has a form µβ.M1[µγ.[β](γN)/α]. Let J ∈ •B,
K ∈ Dκ1(L(A,B)) for κ1 < κ. We can assume that kappa1 is smallest one
such that Dκ1(L(A,B)) contains K. By induction hypothesis on κ1, we have
KN ∈ B. It follows [J](KN) ∈ ⊥. From arbitrariness of K and κ1, µγ.[J](γN) ∈
•
⋃
κ1<κ

Dκ1(L(A,B)) follows. SinceM is a µ-form,M ∈ ••
⋃
κ1<κ

Dκ1(L(A,B)).
We can infer M1[µγ.[J](γN)/α] ∈ ⊥. Since J ∈ •B, we have L ∈ • • B. Now,
from • • B ⊂ B, the thesis follows.

The case where N has a form µα.N1 and L is obtained from reduction
of the outermost redex. L has a form µβ.N1[µγ.[β](Mγ)/α]. Let J ∈ B and
K ∈ Dτ1(S) for τ1 < τ . (as the above, we chose the smallest one.) From in-
duction hypothesis on τ1, we have MK ∈ B. Similarly as above, it follows
µγ.[J](Mγ) ∈ •

⋃
τ1<τ

Dτ1(S). Since N has a µ-form, N ∈ • •
⋃
τ1<τ

Dτ1(S).
We have N1[µγ.[β](Mγ)/α] ∈ ⊥ and hence, L ∈ B.

Lemma 5. Assume that (ti)i∈I , (Ai)i∈I is defined as Definition 10. If M ∈∧1
i∈I Ai, Mti ∈ Ai. Similarly, for (Tj)j∈J and (Aj)j∈J defined as Definition 10,

if M ∈
∧2
j∈J Aj, MTj ∈ Aj.

Proof. The proof goes on the same line of that of Lemma 4. We concentrate the
second order case. Let Dω1(S) =

∧
i∈I Ai. Assume that κ is the least ordinal

such that t ∈ Dκ(S). We will prove that for all L such that MTj ⇒1 L, L ∈ Aj
holds, by induction on κ and w(M).

The case where L ≡ M ′Tj and M ⇒1 M ′. From induction hypothesis of
w(M ′), the thesis follows.

The case where M ≡ λX.M1 and L ≡ M1[Tj/X]. Since M ∈ Π2
j∈JAj , we

have the thesis.
The case where M ≡ µα.M1 and L ≡ µβ.M1[µγ.[β](γTi)/α]. Let J ∈ •Ai

and K ∈ Dκ1(S). (as Lemma 4, we choose the smallest one.) By induction
hypothesis on κ1, we have KTi ∈ Ai. From arbitrariness of K and κ1, it follows

µγ.[J](γTi) ∈ •
⋃
κ1<κ

Dκ1(S).

Since M has a µ-form, M ∈ ••
⋃
κ1<κ

Dκ1(S). We can infer M1[µγ.[J](γTi)/α] ∈
⊥. Hence we have L ∈ • • Ai.

The rest of the proof runs similarly to the usual method of reducibility candi-
dates. Let T be the set of all first order terms. Fn denotes the set of all functions
from T n to R. Suppose that ξ is a map sending first order variables to first order
terms, a predicate variable Xn to n-ary function from the set of first order terms
to R. We extend ξ to be a map on the whole types using ξ(⊥) = ⊥ and the
following clauses.

ξ(•A) = •ξ(A) (7)
ξ(A→ B) = ξ(A)→ ξ(B) (8)

ξ(∀xA) =
1∧

t∈T
ξ[t/x](A) (9)

ξ(∀XnA) =
2∧

f∈Fn
ξ[f/Xn](A) (10)

where ξ[a/b] is defined as a map ξ[a/b](b) = a and for c 6= b, ξ[a/b](c) = ξ(c).

Proposition 2. Let M be a term of type A. Assume that free first order vari-
ables of M are x1, · · · , xm, free predicate variables of M are X1, · · · , Xn and free
variables of M are αA1

1 , · · · , αAll . Suppose that ξ is a map sending first order
variables to first order terms, a predicate variable Xk to k-ary function from
the set of first order terms to R. For each 1 ≤ i ≤ n and t1, · · · , tk ∈ T (k
is the arity of ξ(Xi)) ξ(Xi)t1 · · · tn ∈ RBi[t1/x1,···,tn/xk]. Let Nj ∈ ξ(Aj) for
1 ≤ j ≤ l. We define M̃ by simultaneous substitution ξ(x1), · · · , ξ(xm) into
x1, · · · , xm, B1, · · · , Bn into X1, · · · , Xn, N1, · · · , Nl into α1, · · · , αl on M . Then
we have M̃ ∈ ξ(A).

Proof. By induction on the construction of M .

As a special case, t ∈ ξ(A) holds. From Lemma 3, we have the following
theorem.

Theorem 1. All terms are strongly normalizable.

Acknowledgement. I am grateful to Ken-etsu Fujita, Ryu Hasegawa and
Charles Stewart for their helpful comments and discussion.

References

1. Yuuki Andou. A normalization-procedure for the first order classical natural de-
duction with full symbols. Tsukuba Journal of Mathematics, 19(1):153–162, 1995.

2. F. Barbanera and S. Berardi. A strong normalization result for classical logic. Ann.
Pure Appl. Logic, 76:99–116, 1995.

3. F. Barbanera and S. Berardi. A symmetric lambda calculus for “classical” program
extraction. Inf. Comput., 125(2):103–117, 1996.

4. V. Danos, J. B. Joinet, and H. Schellinx. A new deconstructive logic:linear logic.
J. Symb. Log., 62(3):755–807, 1997.

5. Ph. de Groote. A cps-translation of the λµ-calculus. In Trees in algebra and
programming, CAAP ‘94, number 787 in Lect. Notes Comput. Sci, pages 85–99.
Springer-Verlag, 1994.

6. Ph. de Groote. On the relation between λµ-calculus and the syntactic theory of
sequential control. In Logic programming and automated reasoning, volume 822 of
Lect. Notes Comput. Sci, pages 31–43. Springer-Verlag, 1994.

7. C.-H. L. Ong and C. A. Stewart. A curry-howard foundation for functional compu-
tation with control. In Proceedings of the 24th Annual ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages. ACM press, January 1997.

8. M. Parigot. λµ-calculus: an algorithmic interpretation of classical natural deduc-
tion. In A. Voronkov, editor, Logic Programming and Automated Reasoning, vol-
ume 624 of Lecture Notes in Artificial Intelligence, pages 190–201. Springer-Verlag,
1992.

9. M. Parigot. Classical proofs as programs. In Computational logic and proof theory,
volume 713 of Lect. Notes Comput. Sci, pages 263–276. Springer-Verlag, 1993.

10. M. Parigot. Strong normalization for second order classical natural deduction. J.
Symb. Log., 62(4):1461–1479, 1997.

11. M. Parigot. On the computational interpretation of negation. In P. Clote and
H. Schwichtenberg, editors, Computer Science Logic, volume 1862 of Lect. Notes
Comput. Sci, pages 472–484. Springer-Verlag, 2000.

12. Th. Streicher and B. Reus. Classical logic, continuation semantics and abstract
machines. Journal of Functional Programming, 8(6):543–572, 1998.

