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Abstract. Parigot suggested symmetric structural reduction rules for
application to p-abstraction in [9] to ensure unique representation of
data type. We prove strong normalization of second order Apu-calculus
with these rules.

1 Introduction

Originally, Ap-calculus was defined to clarify correspondence between classical
logic and control operators in functional programming languages. In this respect,
Ap-calculus seems quite successful [5] [6] [7] [12]. In fact, Au-calculus can be seen
as an extension of A-calculus equipped with variables, binding construct and
application for continuation [12]. This makes Au-calculus suitable for the study
of programming languages.

In addition, Parigot was also motivated in [8] by possibility of witness ex-
traction from classical proofs of X{-sentences. Unfortunately, reduction rules of
Ap-calculus seems not sufficient for this purpose. For example, let A(x) be an
atomic formula of arithmetic and A’(z) be its code in second order predicate
logic. We represent Jz.A(z) as VX.Vx(A(x) — X) — X in second order lan-
guage, where X is a variable over propositions. We expect that a closed normal
deduction of Jx.A’(x) somehow contains a unique first order term ¢ such that
A(t) holds. However, consider the following situation. Suppose that A(t) holds
but A(u) does not hold. Let M be a deduction of A’(¢) represented as Au-terms.
AX AapB.[Blau(wy.[BlatM) is a closed and normal deduction of JzA’(z) but
apparently contains two terms t,u. Moreover, u is not a witness of JxA(x).
This suggests that we need additional reduction to extract the witness. In fact,
Parigot proposed addition of new reduction rules (symmetric structural reduc-
tion) M (pa.N) = pf.N[M*/a] to solve similar problem on normal forms of the
natural number type. N[M*/a] is defined by inductively replacing all occurrence
of [¢]L in N to [o] M (L[M*/a]). We will present a new calculus from which rules
above can be derivable, and prove that it suffices to ensure that a closed normal
term of type JxA(z) for an atomic A(x) contains one and only one first order
term ¢t and A(t) holds. While numerous works on computational interpretation
of classical proof are done, properties of normal form does not seem so well un-
derstood. Barbanera and Berardi shows that in symmetric lambda calculus for



first order Peano arithmetic, closed normal forms of this calculus consist of in-
troduction rules alone [3]. In addition to this work, we have to mention Parigot’s
work on output operators, which extract church numeral from classical proof of
inhabitance of natural number type [9]. Danos et al. applied this technique to
second order sequent calculus and show that it can be used for witness extrac-
tion from proofs of X9-formulae [4]. Our work could be seen a sequel to these
studies.

Obviously, to use such calculus for witness extraction, we need normalization
property of it. In addition, if we expect that reduction rules fully specify extrac-
tion algorithm of witness, strong normalization is desirable. However, symmetric
nature of reduction of application to u-abstraction seems to prevent direct adap-
tion of the proof of strong normalization of original Ap-calculus [10]. Luke Ong
and Charles Stewart addressed strong normalization of a calculus with call-by-
value restriction of symmetric structural reduction rules [7]. Their calculus Ay,
is confluent, hence useful as a programming language, in contrast to our calcu-
lus. However, imposing reduction strategy seems to be an alien idea in a logical
calculus. Non-confluency is come from unrestricted use of symmetric structural
rules, hence essential feature of such calculus.

Barbanera and Berardi proved strong normalization of a non-deterministic
calculus for propositional classical logic using fixed point construction for re-
ducibility candidates [2]. We will prove strong normalization of second order
Ap-calculus with the rules above based on this method.

2 Symmetric Aup-calculus

Our formalization is a second order extension of symmetric Ap-calculus in [11].
Usually, a term of Ap-calculus is understood as a proof with multiple conclu-
sions. On the contrary, we consider a Au-term as a proof with a single conclu-
sion but two kinds of hypothesis, ordinary hypothesis and denials of proposi-
tions, which correspond conclusions other than a principal formula in usual Au-
calculus. Moreover, we do not distinguish A-variables and u-variables. x,y, z1, - -
and t,u, %1, - - - stand for first order variables and terms. X™, Y™, X/* and denotes
n-ary predicate variables.

Definition 1. The set of first order term consists of a constant 0, unary func-
tion S, and function symbols f for all primitive recursive function on natural
numbers. A proposition is that of second order predicate logic built up by equality
=, predicate variables X' and logical connectives —, V. Formally,

A formula is a proposition A or a denial ® A of proposition or contradiction 1.
Note that 1 is not counted as a proposition. Other connectives are defined by us-
ing second order construct. For example, 3x.A(x) is defined as VX°.Vr(A(z) —
X% — X% and ANB asVX°.(A— B — X) - X.



Definition 2. An abstraction term T is a form Axy---x,.A for a proposition
A. Substitution B[T/X™] of T for a predicate variable X™ in B is defined by
replacing each occurrences of X™ty---t, whose X™ is a free variable in B, to
Alty, - tn/z1, - Tp).

Definition 3. The set of axioms consists of equality axioms, defining axioms
for primitive recursive functions and the proposition S0 =0 — VX.X. We note
that equality axioms and defining axioms can be formulated as atomic rules, that
is the set of formulae of forms Ay — Ay — -+ — A, with atomic formula
A;. This constraint is relevant to the fact that a closed term of type of atomic
formula without pu consists of axiom alone.

Definition 4. Au-terms of type A are given by followings rules. (In the figure,
t : A means t have the type A.) For each formula A, Ap-terms of type A are
defined inductively as follows. We denote variable by Greek letters o, 3, - - -.

(€]
axiom; : A a:C
(o] [a*4]
M:eA N:A M':L M.:L
[M]N : L po M ;e A a po M A :
o]
M:A-B N:A M:B
app. _
MN : B a.M:A— B
M :VzA . M:A
— app. — !
Mt Alt/x] Ax.M :VzA
M VXA ) M: A
——————app. —
MT : AT/ X] AX.M :VzA

In the above rules \', A2, the derivation of M does not contains x or X as free
variables.

Remark 1. Well typed terms of Parigot’s Apu-calculus can be translated to the
calculus above, by replacing p-variables of type A to variables of type o A.

Remark 2. The reason of “Church style formulation”, that is, incorporating typ-
ing information as a part of term, is that in the proof of strong normalization,
we seems to need the fact that each term has a unique type.

Definition 5. Reduction rules are the followings. Let 3,7,9 be fresh variables.



1) Aa.M)N = M[N/q]

2) Az. M)t = Mt/x]

3) AX™.M)T = M[T/X"]

) [M]pa.N = N[M/q] [uae. M]N = M[N/a]

G1) (pa.M)N = pB.M|py.[B](YN)/a] M(pa.N) = pB.N{uy.[B](M~v)/a]
Go) (pa.M)t = pB.Muy.[B](vt)/a]

() (pa.M)T = pfB.M|py.[6](WT)/

(A
(A
(A
(1
(
(
(

As usual, compatible closure of the rules above is called one-step reduction
relation (denoted =-1) and reflexive and transitive closure of one-step reduction is
called reduction relation (denoted =). w(M) is the maximal length of sequences
M =1 My -+ =1 M, if the maximum exists. Otherwise w(M) is undefined. M
is strongly normalizable if and only if w(M) is defined.

Using p and (-rules, Parigot’s structural reduction [8] and symmetric one [9]
mentioned in Section 1 can be derived.

(pa. . [o]N...)L =¢ pp. .. Jpy.[Bl(YL)N... =, pf. . [B](NL)...

N(pa. ...[a]L...) =¢ pf. ... [uy.[B)(NY)IL... =, pb. ... [B](NL)...

If we understand e as the usual negation symbol, our {-rules resemble to Andou’s
reduction for L. [1].

3 Extraction of witnesses from Zf-formulae

Let N(x) be the formula VX' X'0 — Vz(X'z — X!'Sx) — X'la. It is well
known that we can encode the second order Peano arithmetic into second order
predicate logic as presented above. Y{-sentences are represented as 3z N (z) A
A(x). Since JzA(z) is derivable from such formula, we extract a witness from
the proof of the formula JxA(x).

Definition 6. [-context Ef[] is a context defined by the following grammar.

I[] := M. Ef]] | Az.Ef]] | AX.Ef]]

Eqf] == [ [ 1] | pa[B]I]]

Definition 7. For a proposition A, a(A), B(A) and v(A) are defined as follows.
a(A) is the set of formulae {A} for atomic A and {A} U a(Az) for the case
A=A — Ay VeAy VX As. B(A) is the set of formulae {®#A} for atomic A,
{@A} UB(Ay) for A =VaxA VXA and {A1} U {eA} UB(As) for A= A —
Ay. v(A) is the set of variables O for atomic A, {x} U~(A1) for A = VzAy,
{X}U~(Ay) for A=VX Ay, v(As) for A= Ay — As. For a set S of formulae,
a(S) = Uyeg @(A). B(S),7(S) are defined similarly. Note that S C a(S) and if
B € a(A) then a(B) C a(A).



Lemma 1. Let E;[M] be a term of type A with free variables of type Ay, -+, Ap,
(usual propositions) and By, --- 8B, (denials). Then, the type of M is an el-
ement of a({A, By, --,B,}), types of free variables are contained in the set
{A1,-- -, A} UBH{A, B1,--+,Bn}). Free first order and predicate variable con-
tained in M are those of Er[M] or elements of v(A).

Proof. By induction on construction of E;[M].
Lemma 2. All normal forms of Au-term have forms Er[aM; - - - M,)].
Proof. By induction on construction of a term.

Proposition 1. Let A(x) be an atomic formula and M be a normal closed term
of type xA(x). M contains one and only one first order term t and A(t) holds.

Proof. By Lemma 2 and considering (3zA(z)), together with consistency of the
calculus, we see that M has a form Er[atK]| where o has type Vz(A(z) — X),
t is a first order term and K is a term of type A(t). Since K can not begin
with u, and whose type is atomic, K = K1 Ks--- K,,. K; is either a variable
of type Va(A(z) — X) or axioms, but Va(A(x) — X) is impossible since A(x)
does not contain X as a free variable. Hence K7 is an axiom and types of all
of Ks,--+, K,, are atomic. By similar argument to K, Ko, - -, K,, have a form
of application to axioms. Repeatedly applying this argument, we can conclude
that K consists of axioms alone.

4 Strong normalization

This section is devoted to the proof of strong normalization theorem.
Definition 8. First we prepare several notations.

1. A term beginning with p is called a p-form.
2. For a set S of terms of type C, CI(S) is defined as the smallest set which
satisfies clauses
(a) S C CI(S) and contains all variables of type C.
(b) MN € CI(S) if L € CI(S) for all L such that MN = L.
(¢) Mt e CI(S) if L € CU(S) for all L such that Mt =1 L for a first order
term t.
(d) MT € CI(S) if L € CI(S) for all L such that MT =1 L for an abstrac-
tion term T.
3. The set of strongly normalizable terms of type L is also denoted L.
4. For a set S of terms of type C' # 1,

oS :={pa.M|VN € S, M[N/a] € L}

where « is a variable of type C and M has a type L.



5. the operator D(X) is defined as Cl(X U e e X). Note that ee and hence D
are monotone operators. For ordinal Kk,

D*(x) = D(| ] D"(x)).
T<K
Definition 9 (Reducibility candidates). Let wy be the first uncountable or-
dinal and A be a proposition. Let S be a set of strongly normalizable terms of
type A. Suppose S does not contain a p-form and S is closed under reduction
relation. Then, a set D“*(S) is called a reducibility candidate of the proposition
A. Note that from monotonicity of D, a reducibility candidate is a fized point of

D. The set of candidates of the proposition A is denoted by Ra. R is the union
of all R 4.

Lemma 3. Let R be a reducibility candidate. Then the followings hold.

1. All terms in R are strongly normalizable.
2. R=Cl(SUseR).
3. For M € R and N € R, [M]N € L

Proof. The clause 1 follows from induction on wy.

Since R is a fixed point of D, we have R = Cl(RUeeR) D CI(SUeeR),
while D*(S) C Cl(SU e eR). We have the clause 2.

To prove the clause 3, it suffices to prove that all L such that [M|N =; L
are strongly normalizable. The proof is induction on w(M)+w(N). We consider
each possibility of the reduction of [M]N.

The case where L has the form [M'|N" and M = M’ and N = N'. The
thesis follows from induction hypothesis on w(M) + w(N).

The case where M = pa.M; and L = M;[N/a]. By the hypothesis M € oR.

The case where N = pa.N7 and L = N1[M/a]. By Lemma 3, N should be
an element of e @ R. We have the thesis.

Definition 10. Let A € R4 and B € Rp. Assume that (t;)icr is a non-empty
family of first order terms and (T};);cs s a non-empty family of abstraction
terms. Further, A; is a candidate of the proposition Alt;/x] for each i € I and
Aj is a candidate of the proposition A[T;/X] for each j € J. Candidates A — B
/\1161 A, /\EEJAJ' are defined by the following steps.

L(A,B) := {\a*.M|YN € A, M|N/o*] € B} (1)

I} Ay = (Da.MVi € I, M[t;/x] € A;} 2)

I ;A; = {AX.M|Vj € J, M[T;/X] € A;} (3)

A = B:=D“(L(A,B)) (4)

1

/\ Ai =D (I} Ar) (5)
i€l

N\ Ai = D (IT5 Ay (6)

jeJ



Lemma 4. Let Ac Ry and Be Rg. f M e A— Band N € A, MN € B.

Proof. Let A = D“1(S). Assume that k is the least ordinal such that M €
D*(L(A,B)) and 7 is the least ordinal such that N € D7(S). By induction on
the natural sum x @ 7 and w(M) + w(N), we will prove that if MN =, L,
L € B, which is the exact condition of MN € B.

The case L = M’'N’ and either M =; M’ and N = N’ or M = M’ and
N =1 N’. The thesis follows from induction hypothesis on w(M) + w(N).

The case M = Aa.M; and L = M [N/a]. Since M € L(A, B), we have the
thesis.

The case where M has a form pa.M; and L is obtained from reduction of
the outermost redex. Then, L has a form pfS.M;[uy.[B](vN)/a]. Let J € oB,
K € D" (L(A,B)) for k1 < k. We can assume that kappa; is smallest one
such that D" (L(A,B)) contains K. By induction hypothesis on 1, we have
KN € B. It follows [J](KN) € L. From arbitrariness of K and x4, uy.[J](yN) €
o U, <. D" (L(A, B)) follows. Since M is a p-form, M € oo, _, D" (L(A,B)).
We can infer M;[py.[J](vN)/a] € L. Since J € o8B, we have L € o o 5. Now,
from e @ B C B, the thesis follows.

The case where N has a form pa.N; and L is obtained from reduction
of the outermost redex. L has a form puB.Ni[uy.[B](M~v)/«a]. Let J € B and
K € D™(S) for 4 < 7. (as the above, we chose the smallest one.) From in-
duction hypothesis on 71, we have MK € B. Similarly as above, it follows
py-[J](M~) € o, .. D™(S). Since N has a pu-form, N € oo D™ (95).
We have Ny[uy.[B](M~)/a] € L and hence, L € B.

T1<T

Lemma 5. Assume that (t;)icr, (A;)icr is defined as Definition 10. If M €
/\361 A;, Mt; € A;. Similarly, for (T});cs and (Aj)jes defined as Definition 10,
if M € /\?EJAJ’ MTj € .Aj.

Proof. The proof goes on the same line of that of Lemma 4. We concentrate the
second order case. Let D“'(S) = A, ; A;. Assume that x is the least ordinal
such that ¢t € D(S). We will prove that for all L such that MT; =1 L, L € A;
holds, by induction on s and w(M).

The case where L = M'T; and M =1 M’. From induction hypothesis of
w(M'"), the thesis follows.

The case where M = AX.M; and L = M[T;/X]. Since M € IT;_ ;A;, we
have the thesis.

The case where M = pa.My and L = pf.Mi[py.[B](WT;) /). Let J € o A;
and K € D" (S). (as Lemma 4, we choose the smallest one.) By induction
hypothesis on k1, we have KT; € A;. From arbitrariness of K and k1, it follows

py [J)(vTi) € o | ) D™ (9).

Since M has a u-form, M € ee|
L. Hence we have L € e o A;.

Dr1(S). We can infer My [uy.[J](vT;) /] €

R1<K



The rest of the proof runs similarly to the usual method of reducibility candi-
dates. Let 7 be the set of all first order terms. F™ denotes the set of all functions
from 7™ to R. Suppose that ¢ is a map sending first order variables to first order
terms, a predicate variable X to n-ary function from the set of first order terms
to R. We extend £ to be a map on the whole types using (L) = L and the
following clauses.

S(od) = o (4) 0
(A — B) = ¢(4) — ¢(B) (8)
1
s(Vad) = N\ €lt/a)(4) (9)
teT
VXA = N\ €[F/X7(A) (10)
feFn

where &[a/b] is defined as a map &[a/b](b) = a and for ¢ # b, £[a/b](c) = &(c).

Proposition 2. Let M be a term of type A. Assume that free first order vari-
ables of M are x1,- -, xy,, free predicate variables of M are X1, -+, X, and free
variables of M are alAl,---,af". Suppose that & is a map sending first order
variables to first order terms, a predicate variable X* to k-ary function from
the set of first order terms to R. For each 1 < i < n and ty,---,tp € T (k
is the arity of £(X;)) &(Xi)t1--tn € Rp,jt,/ay, - tn/a]- Let Nj € E(Ajy) for
1 < j < 1. We define M by simultaneous substitution &(x1),---,&(xm) into
T1,yTm, B1, -+, By into X1,--+, Xy, N1,---,N; into ay,---,c; on M. Then
we have M € £(A).

Proof. By induction on the construction of M.

As a special case, t € £(A) holds. From Lemma 3, we have the following
theorem.

Theorem 1. All terms are strongly normalizable.
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