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Abstract. Parigot [12] suggested symmetric structural reduction rules to en-

sure unique representation of data types. We prove strong normalization of
the second-order λµ-calculus with such rules.

1. Introduction

Ever since its introduction by Parigot [11], the λµ-calculus seems to have been
quite successful as an idealized programming language, especially for modeling of
control operators. The λµ-calculus has continuation semantics (Groote [5]) and an
exact correspondence to the call-by-name control-operator calculus (Groote [6]). As
shown by Streicher and Reus [17], it is naturally derived from the Krivine machine.

Parigot [11] was also motivated by the possibility of extracting witnesses from
classical proofs of Σ0

1-formulae. Unfortunately, the reduction rules of the λµ-
calculus do not appear to be sufficient for this purpose. For example, let A(x) be an
atomic formula of arithmetic. We represent ∃xA(x) as ∀X(∀x(A(x) → X) → X)
in the second-order language, where the variable X ranges over propositions. We
expect a closed, normal deduction of ∃xA(x) to somehow contain the unique first-
order term t such that A(t) holds. However, consider the following scenario: Sup-
pose that A(t) holds but A(u) does not hold, and let M be a deduction of A(t)
represented as a λµ-term. Then

(1) ΛX.λα.µβ.[β]αu(µγ.[β]αtM)

is a closed, normal deduction of ∃xA(x), but it apparently contains two terms (t
and u). Moreover, u is not the witness for ∃xA(x). This suggests that further
reduction is needed to extract the witness.

In order to solve a similar problem on normal forms of the natural-number
type, Parigot [12] proposed new reduction rules M(µα.N) ⇒ µβ.N [M∗/α], where
N [M∗/α] is defined by inductively replacing all occurrences of [α]L in N with
[α]M(L[M∗/α]). We refer collectively to these new rules and the structural reduc-
tion rules of the λµ-calculus as symmetric structural reduction rules, and we call the
λµ-calculus with symmetric structural reduction the symmetric λµ-calculus. Ong
and Stewart [10] subsequently defined the call-by-value λµ-calculus λµv, which
uses symmetric structural reduction, and showed that it can encode various control
structures in computer programs.

In this article, we prove strong normalization of the second-order predicate sym-
metric λµ-calculus and show that a closed, normal deduction of ∃xA(x) for an
atomic formula A(x) contains the unique first-order term t which satisfies A(t).
Ong and Stewart [10] mentioned that strong normalization of the λµv-calculus can
be proved by the method of reducibility candidates. Nakazawa [8] gave a proof
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of strong normalization using CPS-translation. We improve on their result by re-
moving the call-by-value restriction on the reduction strategy and showing that
witnesses can always be extracted from deductions of Σ0

1-formulae.
In the presence of symmetric structural reduction, the final result of a com-

putation may depend on the reduction strategy employed. However, this non-
determinism in our calculus is manageable in the sense that if a program is of type
∃xA(x), then all values computed with that program are guaranteed to satisfy the
specification given by A(x). Since symmetric structural reduction reflects the sym-
metric nature of classical logic, the non-determinism in our λµ-calculus may be an
inherent property of classical logic.

Strong normalization and extraction of witnesses for Σ0
1-formulae are known to

hold of the symmetric lambda calculus for Peano arithmetic introduced By Bar-
banera and Berardi [3]. By use of an extraction operator, witnesses for Σ0

1-formulae
can also be extracted in Parigot’s λµ-calculus as shown by Parigot [12] and the
second-order sequent calculus as shown by Danos et al. [4]. Compared to the
symmetric lambda calculus for Peano arithmetic, however, our approach has the
advantage that the symmetric λµ-calculus is an extension of the λµ-calculus, which
is in turn an extension of the λ-calculus. Furthermore, unlike the case of the λµ-
calculus and the second-order sequent calculus, our approach does not require use
of an extraction operator.

The main technical result presented in this article is strong normalization. Non-
determinism of our calculus precludes the possibility of CPS-translation. Further,
the symmetric nature of our structural reduction appears to preclude direct adap-
tation of Parigot’s proof [13] of strong normalization for the original λµ-calculus.
Instead, we adapt Barbanera and Berardi’s method [3, 2] of using transfinite in-
duction for defining reducibility candidates. The requirements for reducibility can-
didates are naturally obtained from the notion of validity introduced by Prawitz
[15].

2. Symmetric λµ-calculus

The logic treated in this paper is second-order classical predicate logic. We for-
mulate second-order predicate logic as a many-sorted logic whose domains of quan-
tification are either first-order objects, or predicates over first-order objects. To de-
note first-order objects, we introduce first-order terms, which are constructed using
constants c1, c2, . . ., function symbols f1, f2, . . ., and first-order variables x1, x2, . . ..
Formally, the syntax of a first-order term t is specified by the BNF notation

(2) t ::= ci | xj | fkt1 · · · trk ,

where ci is a constant, xj is a first-order variable, fk is a function symbol for a
function with arity rk, and t1, . . . , trj are first-order terms. The symbols x, y, z are
used to denote first-order variables, and t, u, v are used to denote first-order terms.

In this article, we refer to formulae as types. A type either consists of just ⊥ (the
absurdity) or has the form A or ¬A (the negation of A) for some A that contains
neither ¬ nor ⊥. (For example, there is no type such as A→ ⊥.) We call such an A
a proposition. To emphasize the restriction placed on negation, we use the symbol •
for ¬. For a proposition A, we define •A by the involution • •A = A. The symbols
A,B,A1, . . . are used to denote propositions, while the symbols C,D,C1, . . . are
used for types.
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Table 1. λµ-terms and their types

ai : Ai

[αC ]

αC : C

M : •A N : A
[M ]N : ⊥

[ ]

[αA]
.... D1

M : ⊥
µαA.M : •A

µα

[α•A]
.... D2

M : ⊥
µα•A.M : A

µα

M : A→ B N : A
MN : B

app.

[αA]
.... D

M : B

λαA.M : A→ B
λα

M : ∀xA
Mt : A[t/x]

app.1

.... D3

M : A
λx.M : ∀xA λ1

M : ∀XA
MT : A[T/X]

app.2

.... D4

M : A
λX.M : ∀XA λ2

D3 has no open assumptions which have x as a free predicate variable. Similarly,
D4 has no open assumptions which have X as a free first-order variable.

Intuitively, propositions are the objects affirmed or denied, and types are asser-
tions which affirm or deny propositions or show that a contradiction arises. This
view is proposed by Stewart [16]. Formally, propositions are built up by using
the following symbols and connectives: =, to express equality between first-order
objects; n-ary predicate variables Xn

i , to form n-ary predicates over first-order ob-
jects; →, to express implication; and ∀, to indicate universal quantification over
first-order objects and predicates. The syntax of a proposition A is specified by the
BNF notation

(3) A ::= t1 = t2 | Xn
i t1 · · · tn | A1 → A2 | ∀xA | ∀Xn

i A,

where t1, . . . , tn are first-order terms. We call a proposition of the form t1 = t2
an atomic proposition. X,Y, Z are used to denote predicate variables. Logical
connectives and quantifiers other than → and ∀ are defined by using second-order
constructs. For example, ∃xA(x) is defined as ∀X(∀x(A(x)→ X)→ X), and A∧B
as ∀X((A→ B → X)→ X).

Definition 1. An (n-ary) abstraction term is a term of the form λx1 · · ·xn.A for
some proposition A. The abstraction term λx1 · · ·xn.A denotes the n-ary predicate
P defined by Px1 . . . xn ↔ A(x1, . . . , xn). If T is the abstraction term λx1 · · ·xn.A,
then substitution of T for the n-ary predicate variable X in B, which is denoted by
B[T/X], is defined by replacing all occurrences of Xt1 · · · tn in which X is free in
B with A[t1, . . . , tn/x1, . . . , xn].

Definition 2. To denote deductions, we employ what we call λµ-terms. If a λµ-
term M denotes a deduction of some type C, we say that M is of type C. As shown
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Table 1, we define the set of λµ-terms by relating them to various deductions, each
of which is presented in the form of a tree. Whenever an assumption of type C
(where C is a type other than ⊥) appears in a λµ-term, we call that assumption a
λµ-variable of type C. We denote λµ-variables of type C by Greek letters, with C
as a superscript: αC , βC , . . .. We choose the particular set Ax of propositions as
axioms. For each axiom Ai, there is a deduction of Ai without any premise and
inference. We denote such a deduction by λµ-constant ai.

In Table 1, C stands for a type other than ⊥ (and M : C means that M is
of type C); A and B stand for propositions. When the inference discharges some
assumption, the discharged assumption is written to the right of the name of the
inference in the diagrams below. (In the expression µα, for instance, µ is the name
of the inference and α is the discharged assumption.) Ai denotes the i-th axiom in
Ax. The deduction of the axiom Ai is denoted by the constant ai. λ and µ bind
the λµ-variable αA in λαA and µαA, respectively, and similarly for the λµ-variable
α•A. In addition, λ binds the first-order variable x in λx, and the predicate variable
X in λX. FV (M) denotes the set of all free λµ-variables in the λµ-term M . If
M has no free λµ-variables (but possibly has free first-order variables and/or free
predicate variables), we say that M is closed. If a λµ-term M is constructed by
rule app., app.1, or app.2, we say that M is constructed by application, or that M
has a form of application, or simply that M is application.

If we translate denial (•) as negation (¬), all the above rules are valid in classical
logic. Conversely, well-typed terms of Parigot’s λµ-calculus can be translated into
λµ-terms of the sort given above, by replacing µ-variables of type A (where A is
what we are calling a proposition) with λµ-variables of type •A. Hence, the set of
classically valid propositions is exactly the same as the set of propositions which
are inhabited by closed λµ-terms.

The reason for use of the “Church-style formulation,” that is, incorporation of
typing information into the λµ-terms, is that in the proof of strong normalization,
we seem to need the fact that every λµ-term defined in this way denotes a unique
deduction.

Parigot [14] proposed a single-conclusion system for the λµ-calculus which is
similar to our system but allows for negation (¬)—which is exactly the same as
denial (•) for us—to be applied to subformulae as well.

For a type C other than ⊥, and a λµ-term N of type C, substitution of N for the
λµ-variable αC in a λµ-term M is defined by replacing each free occurrence of αC

in M with N ; the resulting λµ-term is denoted by M [N/αC ]. To substitute a first-
order term t for the first-order variable x in a λµ-term M , first do the following: for
every type C, and every λµ-variable αC in M that is outside the binding constructs
of x, replace αC in M with αC[t/x]; and then replace all free occurrences of x in
first-order terms in M with t. The λµ-term obtained by this procedure is denoted
by M [t/x]. Substitution of an abstraction term T for the predicate variable X in
M is defined similarly, and the resulting λµ-term is denoted by M [T/X].

Definition 3. We define transformations of λµ-terms by the rules given below. To
show that each of these transformations preserves the type of a λµ-term, we give
a part of a corresponding deduction for each λµ-term that appears in the rules.
The symbol D is used to denote the common part of deductions before and after a
transformation. Note that substitution of the λµ-term N for the λµ-variable α in
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the λµ-term M corresponds concatenation of two deduction D1 and D2 in the place
of the assumption α, if N corresponds D1 and M corresponds D2.

For rule R (where R denotes any of the rules given below), the compatible closure
of the binary relation defined by R is called the one-step reduction relation by R
or one-step reduction by R (and is denoted by ⇒1

R). The union, over all rules
R, of such one-step reduction relations is called the one-step reduction relation or
one-step reduction (and is denoted by ⇒1). The reflexive and transitive closure of
the one-step reduction relation is called the reduction relation, or simply reduction
(and is denoted by ⇒). Similarly, the reflexive and transitive closure of ⇒1

R is
denoted by ⇒R.

If there is no rule that could be applied to a λµ-term M , we say that M is normal.
If M ⇒ N and N is normal, we say that N is a normal form of M . The length
of the sequence M ⇒1 M1 ⇒1 · · · ⇒1 Mn of one-step reductions is defined to be
n. Let w(M) be the length of the longest sequence of one-step reductions, if such
exists; otherwise, w(M) is undefined. M is strongly normalizable if and only if
w(M) is defined.
λ-reduction rule:

(4)

[αA]
.... D

M : B
λα.M : A→ B

λα
N : A

(λα.M)N : B

⇒1
λ

N : A.... D
M [N/α] : B

λ1-reduction rule:

(5)

.... D
M : A

λx.M : ∀xA
(λx.M)t : A[t/x]

⇒1
λ1

.... D[t/x]

M [t/x] : A[t/x]

D[t/x] is the deduction obtained from D by substitution of t for x in types and
λµ-terms in D.
λ2-reduction rule:

(6)

.... D
M : A

λX.M : ∀XA
(λX.M)T : A[T/X]

⇒1
λ2

.... D[T/X]

M [T/X] : A[T/X]

The definition of D[T/X] is analogous to that of D[t/x]. The λ-, λ1-, and λ2-
rules are just the →- and ∀-contraction rules of natural deduction. Also, they are
extensions of β-reduction in the λ-calculus for predicate logic.
µ-reduction rule: This rule appeared in Parigot [14], Stewart [16]. There are

two cases, µL and µR. The µL-rule is similar to the ¬-contraction rule of natural
deduction.

(7)

[αA]
.... D

M : ⊥
µα.M : •A

µα
N : A

[µα.M ]N : ⊥

⇒1
µL

N : A.... D
M [N/α] : ⊥
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(8)
M : •A

[α•A]
.... D

N : ⊥
µα.N : A

µα

[M ]µα.N : ⊥

⇒1
µR

M : •A.... D
N [M/α] : ⊥

ζ-reduction rule: Again, there are two cases, ζL and ζR. The former appeared
in Parigot [14]. If we think of • as negation, then Andou’s reduction for ⊥c [1]
also resembles the ζL-rule. The ζ-rules are needed for the encoding of symmetric
structural reduction, as shown later. The ζ1- and ζ2-rules are analogous to the
ζL-rules.

(9)

[α•(A→B)]
.... D

M : ⊥
µα.M : A→ B

µα
N : A

(µα.M)N : B

⇒1
ζL

[β•B ]

[γA→B ] N : A

γN : B

[β](γN) : ⊥
µγ.[β](γN) : •(A→ B)

µγ

.... D
M [µγ.[β](γN)/α] : ⊥

µβ.M [µγ.[β](γN)/α] : B
µβ

(10)
M : A→ B

[α•A]
.... D

N : ⊥
µα.N : A

µα

M(µα.N) : B

⇒1
ζR

[β•B ]

M : A→ B [γA]

Mγ : B

[β](Mγ) : ⊥
µγ.[β](Mγ) : •A

µγ

.... D
N [µγ.[β](Mγ)/α] : ⊥

µβ.N [µγ.[β](Mγ)/α] : B
µβ

ζ1-reduction rule:

(11)

[α•∀xA]
.... D

M : ⊥
µα.M : ∀xA

(µα.M)t : A[t/x]

⇒1
ζ1

[β•A[t/x]]

[γ∀xA]

γt : A[t/x]

[β](γt) : ⊥
µγ.[β](γt) : •∀xA

µγ

.... D
M [µγ.[β](γt)/α] : ⊥

µβ.M [µγ.[β](γt)/α] : A[t/x]
µβ

ζ2-reduction rule:

(12)

[α•∀XA]
.... D

M : ⊥
µα.M : ∀XA

(µα.M)T : A[T/X]

⇒1
ζ2

[β•A[T/X]]

[γ∀XA]

γT : A[T/X]

[β](γT ) : ⊥
µγ.[β](γT ) : •∀XA

µγ

.... D
M [µγ.[β](γT )/α] : ⊥

µβ.M [µγ.[β](γT )/α] : A[T/X]
µβ
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•-reduction rule: The •-, •1-, and •2-rules are similar to Prawitz’s reduction
for ⊥c. The idea is to reduce the complexity of the type of the assumption discharged
by the µ-inference if the type is a denial.

(13)

[α•(A→B)]
.... D

M : ⊥
µα.M : A→ B

µα
⇒1
•

[β•B ]

[γA→B ] [δA]

γδ : B

[β](γδ) : ⊥
µγ.[β](γδ) : •(A→ B)

µγ

.... D
M [µγ.[β](γδ)/α] : ⊥

µβ.M [µγ.[β](γδ)/α] : B
µβ

λδ.µβ.M [µγ.[β](γδ)/α] : A→ B
λδ

•1-reduction rule:

(14)

[α•∀xA]
.... D

M : ⊥
µα.M : ∀xA

⇒1
•1

[β•A]

[γ∀xA]

γx : A

[β](γx) : ⊥
µγ.[β](γx) : •∀xA

µγ

.... D
M [µγ.[β](γx)/α] : ⊥

µβ.M [µγ.[β](γx)/α] : A
µβ

λx.µβ.M [µγ.[β](γx)/α] : ∀xA
•2-reduction rule: Let T0 be the abstraction term λx1 · · ·xn.Xx1 · · ·xn, where

n is the arity of X.

(15)

[α•∀XA]
.... D

M : ⊥
µα.M : ∀XA

⇒1
•2

[β•A]

[γ∀XA]

γT0 : A

[β](γT0) : ⊥
µγ.[β](γT0) : •∀XA

µγ

.... D
M [µγ.[β](γT0)/α] : ⊥

µβ.M [µγ.[β](γT0)/α] : A
µβ

λX.µβ.M [µγ.[β](γT0)/α] : ∀XA
S-reduction rule: This rule is analogous to η-reduction in the λ-calculus. If

the λµ-variable α•A is not free in M , the following reduction is possible.

(16)
[α•A]

.... D
M : A

[α]M : ⊥
µα.[α]M : A

µα

⇒1
S

.... D
M : A

There is a certain amount of redundancy in these reduction rules. ζL-reduction
is derivable from •- and λ-reduction. ζ1- and ζ2-reduction are derivable from •1-,
•2-, and λ-reduction. Despite this redundancy, we choose to exhibit all the rules
here in order to make clear the symmetric nature of the ζ-rule.

We can easily see that our calculus is an extension of Parigot’s λµ-calculus. The
λ-rule is the same as β-reduction in the λ-calculus. The µ-rule is an extension



8 YORIYUKI YAMAGATA

of Parigot’s renaming rule [α]µβ.M ⇒ M [α/β]. Using µ and our ζ-rules, we can
derive the symmetric structural reduction rules from Parigot [12] that we referred
to in Section 1:

(µα. · · · [α]N · · · )L⇒ζ µβ. · · · [µγ.[β](γL)]N · · ·
⇒µ µβ. · · · [β](NL) · · ·(17)

N(µα. · · · [α]L · · · )⇒ζ µβ. · · · [µγ.[β](Nγ)]L · · ·
⇒µ µβ. · · · [β](NL) · · ·(18)

In this way, we can formalize structural reduction by usual substitution.
Our S-reduction rule is equivalent to the (S2)-rule in Parigot [12]. S-reduction

and •-, •1-, and •2-reduction are needed for the extraction of witnesses.

3. Extraction of witnesses from Σ0
1-formulae

Since our calculus can simulate Parigot’s symmetric structural reduction, λµ-
terms of the natural-number type are reduced to Church numerals as mentioned by
Parigot [12]. See Nour [9] for a complete proof. However, this does not necessarily
mean that witnesses can be extracted from proofs of Σ0

1-formulae. It is instructive to
see how the standard method used in intuitionistic logic fails, even for Σ0

1-formulae.
For more about witness extraction of intuitionistic logic, for example see Girard et
al. [7].

In the following discussion, we assume that 0 is included in the constants, and
S is included in the unary function symbols. 0 stands for zero in the natural
numbers and S stands for the successor function. The formula N(x) is defined as
∀X(X0→ (∀y(Xy → XSy)→ Xx)).

Consider the deduction D of ∃x(N(x)∧A(x)) where A(x) is an atomic proposi-
tion, shown in Fig. 1.

Figure 1. Deduction of ∃x(N(x) ∧A(x))

[•∃x(N(x) ∧A(x))]α

.... D0

N(0)

[•∃x(N(x) ∧A(x))]α

.... Dn
N(n)

....
A(n)

∃x(N(x) ∧A(x))

⊥
A(0)

µ

N(0) ∧A(0)

∃x(N(x) ∧A(x))

⊥
∃x(N(x) ∧A(x))

µα

D is not normal, but further reduction would involve only α and the ∃ quantifier.
In particular, there is no way to eliminate D0.

Dropping the predicative part and supplying ∧-elimination yields the left-hand
diagram in Figure 2, which reduces to the right-hand diagram in the figure by
reduction of redex (1). (N is the natural-number type, and 0 and n are the Church
numerals for 0 and n, respectively.)

If we reduce redex (2), the right-hand diagram becomes µα.[α]0, which reduces
to 0. However, there is no guarantee that A(0) holds.
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Figure 2. Propositional part and its reduction

[•(N ∧ >)]α

.... 0

N

[•(N ∧ >)]α

.... n

N

....
>

N ∧ >
⊥
>
µ

N ∧ >
⊥

N ∧ > (1)
µα

N

⇒

[•N ]α

.... 0

N

[•N ]α

.... n

N

....
>

N ∧ >
N

⊥
>
µ

N ∧ >
N (2)

⊥
N

µα

The cause of the problem appears to stem from the presence of conjunction.
Hence, we consider only λµ-terms of type ∃xA(x) for some atomic proposition
A(x) and show that their normal forms end with introduction of the ∃ quantifier.
Since ∃xA(x) is derivable from ∃x(N(x) ∧ A(x)), this approach is sufficient for
extraction of witnesses for Σ0

1-formulae.

Definition 4. If the set Ax of axioms satisfies the following conditions, we say
that Ax is a Post system.

(1) Each A ∈ Ax is of the form p1 → (p2 → (· · · → (pn−1 → pn)· · · )), where
p1, . . . , pn are atomic propositions. For n = 2, 3, and 4, what this means
is that these propositions are of the form p1 → p2, p1 → (p2 → p3), and
p1 → (p2 → (p3 → p4)), respectively.

(2) If A ∈ Ax, then for each first-order variable x and first-order term t, the
proposition A[t/x] obtained by substituting t for x is also an element of Ax.

Note that in intuitionistic logic, if all non-logical axioms constitute a Post system,
all the rules of inference in a closed, normal deduction of an atomic proposition are
elimination rules. We will see later that a similar property holds of classical logic in
the presence of symmetric structural reduction rules. By restricting quantifiers over
the natural numbers to the predicate N(x) ≡ ∀X(X0→ (∀y(Xy → XSy)→ Xx))
and replacing ⊥ (the symbol for absurdity) in the language of arithmetic with
0 = S0, second-order Peano Arithmetic can be formalized by a Post system.

Theorem 1. Assume that Ax is a Post system. Let A(x) be an atomic proposition,
and let M be a closed, normal λµ-term of type ∃xA(x). Then M has the form
λX.λα.αtN , where t is a first-order term and N is a closed, normal λµ-term of
type A(t).

To prove the theorem, we need the following lemma.

Lemma 1. Assume that Ax is a Post system. Let M be a normal λµ-term whose
type is an atomic proposition. Assume that every λµ-variable of M either is of type
∀x(A(x) → X) for some proposition A or is a denial •B. Assume, furthermore,
that M does not begin with µ. Then M is closed.

Proof. By induction on the construction of M .
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Case i. M is a λµ-variable. This case cannot occur, since ∀x(A(x) → X) and
•B are not atomic propositions.

Case ii. M is an axiom. Then M is closed.
Case iii. M is constructed by application. Then M has the form M0Σ1Σ2 . . .Σn

where M0 is an axiom or a λµ-variable and Σi is either a λµ-term, a first-order
term, or an abstraction term. Suppose that M0 is a λµ-variable. For application
to be possible, and since the type of M0 is either ∀x(A(x) → X) or a denial, M0

must be of type ∀x(A(x) → X). Therefore, the type of M contains the predicate
variable X, which contradicts the assumption that M is of an atomic proposition.
Hence, M0 is an axiom. By the constraints given in Definition 4, Σi is a λµ-term
whose type is an atomic proposition. Since M is normal, Σi cannot begin with µ
(otherwise, ζ-reduction could be applied). By the induction hypothesis, Σi has no
free λµ-variables. Hence, M is closed.

Case iv. M begins with λ. This case cannot occur, since M is of an atomic
proposition.

Case v. M is of the form [α]M0. Then M is of type ⊥. This contradicts the
assumption that M is of an atomic proposition. �

Remark. Using this lemma, we can show that a closed, normal λµ-term L of an
atomic proposition is constructed by axioms and application. The only way in
which the proof differs from the proof in intuitionistic logic is in the case where L
contains the symbols µ and [ ]. Because of the ζ-reduction rules, these symbols can
appear only at the beginning of a λµ-term. So suppose that L ≡ µα.[α]M and that
L is a closed, normal λµ-term of an atomic proposition. M cannot begin with µ,
otherwise we could apply µ-reduction to µα.[α]M . Hence we can apply the above
lemma to M . Since M has no free λµ-variables, S-reduction can be applied to L,
in contradiction to our assumption about L. Hence, neither µ nor [ ] appears in L.
The rest of the proof is similar to the case of intuitionistic logic.

Proof. Proof of the Theorem By the type of M , M could begin with either λ or µ.
However, if M began with µ, a •2-reduction rule could be applied to M . Hence M
is of the form λX.M1. By similar reasoning, M1 begins with λ. Hence, M is of the
form λX.λα∀y(A(y)→X).M2. By the type of M2, M2 either begins with µ or can be
constructed by application. We consider these two possibilities.

Case i. M2 is constructed by application. Let M2 ≡ M3Σ1Σ2 . . .Σn where M3

is not constructed by application. M3 is either an axiom ai for some integer i or
a λµ-variable, otherwise we could apply one of λ, λ1, λ2, ζ, ζ1, ζ2-reduction rules to
M2. On the other hand, M3 cannot be an axiom since the type of M3 contains a
predicate variable X but this is impossible. Since the only open λµ-variable of M2

has type ∀y(A(y)→ X), M2 has a form αtN where t is a first-order term and N is
a λµ-term with type A(t).
N cannot begin with µ, otherwise we could apply ζ-reduction to the redex (αt)N .

Hence, we can apply the previous lemma to N and infer that N is closed. So the
conclusion of the theorem is satisfied.

Case ii. M2 begins with µ. Then M2 is of the form µβ.[β]M3. M3 cannot begin
with µ, otherwise µ-reduction could be applied to M2. Since the type of M3 is
atomic, M3 is constructed by application. By reasoning similar to that used above,
M3 is of the form αtN . By the previous lemma, N is closed. Hence, S-reduction
can be applied to µβ.[β]αtN . This contradicts the normality of M . Therefore, this
case cannot occur. �



SECOND ORDER WYMMETRIC LAMBDA–MU CALCULUS 11

4. Strong normalization

This section is devoted to the proof of strong normalization. We first show that
strong normalization for the full calculus can be reduced to strong normalization of
reductions that do not involve use of the ζL-, ζ1-, ζ2-, and S-rules. As noted before,
the ζL-, ζ1-, and ζ2-rules can be derived from the •-, •1-, and •2-rules and the λ-,
λ1-, and λ2-rules. In the case of the S-rules, we exploit the fact that S-reduction
can be postponed until after other kinds of reduction have been carried out.

Let ⇒∗ and ⇒1
∗ denote reduction and one-step reduction without use of the S-,

ζL-, ζ1-, and ζ2-rules.

Proposition 1. Let M,N,K be λµ-terms, and assume that M ⇒1
S N ⇒1

∗ K.
Then there is a λµ-term L such that M 6= L, M ⇒∗ L, and L ⇒S K. (Note that
L could be identical to K.)

Proof. M can be written as E[µα.[α]M1], with α not free in M1. We will check all
possible reduction rules R other than S, ζL, ζ1, and ζ2 (that is, we will set R to
each such rule in turn, substituting its name for ∗ in N ⇒1

∗ K, and then show that
there exists L 6= M such that M ⇒∗ L⇒S K, where the ∗ in M ⇒∗ K stands for
any rule other than S, ζL, ζ1, and ζ2).

Case i. R = λ. In this case, N and K can be written as E[M1] = E′[(λβ.N1)N2]
and E′[N1[N2/β]], respectively. There are several possibilities for the relation-
ship of M1 to N1 and N2. First, we consider the case where M1 contains the
λµ-term (λβ.N1)N2. Let M1 be E′′[(λβ.N1)N2]. Then we can take L to be
E[µα.[α]E′′[N1[N2/β]]]. Next, we consider the case where N1 or N2 contains
M1. If N1 contains M1, let N1 be E′′[M1], in which case we can take L to be
E′[(E′′[µα.[α]M1])[N2/β]]. If N2 contains M1, let N2 be E′′[M1], in which case
we can take L to be E[N1[E′′[µα.[α]M1]/β]]. Finally, we consider the case where
M1 = λβ.N1. The following reduction is possible.

(µα.[α]λβ.N1)N2 ⇒• (λδ.µα.[µγ.[α](γδ)]λβ.N1)N2

⇒λ µα.[µγ.[α](γN2)]λβ.N1

⇒µ µα.[α](λβ.N1)N2

⇒λ µα.[α]N1[N2/β]
⇒S N1[N2/β]

Here, we can take L to be E′[µα.[α]N1[N2/β]]. These three cases cover all the
possibilities in which M1 and (λβ.N1)N2 have an overlap. If there is no overlap
between M1 and (λβ.N1)N2, the conclusion of the proposition is obvious.

Case ii. R = λ1 or λ2. The proof of this case is similar to the case R = λ.
Case iii. R = µ. Assume that N = E[M1] = E′[[N1]µβ.N2] and K =

E′[N2[N1/β]]. (The proof for the case where N is of the form E′[[µβ.N1]N2] and
K is of the form E′[N1[N2/β]] is similar.) Just as in case i, there are four possibil-
ities, corresponding to the relative positions of M , N1, and N2. Only for the case
M1 = µβ.N2 is the proof non-trivial. In this case, we can use K itself as L, since
the following reduction is possible.

[N1](µα.[α](µβ.N2)) ⇒µ [N1](µβ.N2)
⇒µ N2[N1/β]

Case iv. R = ζR. Assume that N is of the form E′[N1(µβ.N2)], and that K
is of the form E′[µβ.N2[µγ.[β]γN1/β]]. As before, the only non-trivial case is that
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of M1 = µβ.N2. Since the following reduction is possible, we can choose L to be
E′[µα.[α](µβ.N2[µγ.[β]N1γ/β])].

N1(µα.[α](µβ.N2)) ⇒ζR µα.[µγ.[α](N1γ)](µβ.N2)
⇒µ µα.[α](N1(µβ.N2))
⇒ζR µα.[α](µβ.N2[µγ.[β]N1γ/β])
⇒S µβ.N2[µγ.[β]γN1/β]

Case v. R = •. Assume that N = E′[µβ.N1] and that µβ.N1 has been reduced
by application of the •-rule to the outermost µ-symbol. Since either N1 contains
M1 or M1 contains µβ.N1, the conclusion of the proposition is obvious. The cases
R = •1 and R = •2 are treated similarly. �

Proposition 2. If a λµ-term M is strongly normalizable via ⇒∗, then M is
strongly normalizable via ⇒.

Proof. We prove the contrapositive, so assume that M is not strongly normalizable
via ⇒. By König’s lemma, there is an infinite sequence M ⇒1 M1 ⇒1 M2 ⇒1 . . ..
For reasons stated earlier, we can assume that this sequence does not use the ζL-, ζ1-
, and ζ2-rules. Since it is impossible that, from some point on, all these reductions
are S-reductions (i.e., we cannot have Mk ⇒1

S Mk+1 ⇒1
S · · · for some k ≥ 1),

there are infinitely many ⇒1
∗ in the sequence. Using the proposition above, we

can construct an arbitrarily long finite sequence of ⇒1
∗ from M . Hence, M is not

strongly normalizable via ⇒∗. �

Next, we use the method of reducibility candidates to prove strong normalization
via ⇒∗. From this point on, ⇒1

∗ and ⇒∗ are written as ⇒1 and ⇒ for simplicity.
Our construction of reducibility follows the notion of strong validity introduced by
Prawitz [15]. Strongly valid λµ-terms are either 1) λµ-terms that are constructed
from strongly valid λµ-terms by introduction rules or 2) λµ-terms all of whose
reduction sequences lead to λµ-terms that can be obtained as in 1). Strong validity
of a λµ-term M with a free λµ-variable α of type C is defined by strong validity of
M [N/α] for all strongly valid terms N of type C. For intuitionistic logic, this gives
an inductive definition over construction of formulae. To adapt this idea, we had
to specify what the introduction rules are. We decided that the µ-rule, as well as
the λ-, λ1-, and λ2-rules, are the introduction rules for this purpose. For example,
the λµ-term

(19)

[α : •A]
....

M : ⊥
µα.M : A

is strongly valid if and only if M is strongly valid. M is strongly valid if and only
if for all strongly valid terms N of type •A, M [N/α] is strongly valid. There is
circularity in our definition, since the notion of strongly validity over λµ-terms of
type •A depends on the notion of strong validity over λµ-terms of type A. We
resolve this circularity by transfinite induction up to the first uncountable ordinal,
ω1. We denote the set of λµ-variables and λµ-constants of type C as VC .

Definition 5.
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(1) For a set S of λµ-terms of type C, Cl(S) is defined as the smallest set of
λµ-terms of type C which satisfies the following conditions. (Cl is a closure
operator.)
(a) S,VC ⊆ Cl(S).
(b) Let Σ be either a λµ-term, a first-order term, or an abstraction term.

If MΣ is a λµ-term of type C and N ∈ Cl(S) for all N such that
MΣ⇒1 N , then MΣ ∈ Cl(S).

Note that if all the λµ-terms in S are strongly normalizable, then all the
λµ-terms in Cl(S) are strongly normalizable.

(2) The set of strongly normalizable λµ-terms of type ⊥ is also denoted by ⊥.
(3) Let S be a set of λµ-terms of type A (resp. •A). Then the set •S of λµ-

terms of type •A (resp. A) is defined as

(20) •S := {µα.M |∀N ∈ S,M [N/α] ∈ ⊥}.

Note that if S is not empty and the type of λµ-terms of S is a proposition,
then •S consists of strongly normalizable terms. This is because •, •1, •2-
reductions cannot be applied to the outermost µ of µα.M ∈ •S and M is
strongly normalizable by the definition of •.

(4) The operator D(S) is defined as Cl(S ∪ • •S). Note that •• is a monotone
operator, as is D. For ordinals σ, we define Dσ as

D0(S) := S(21)

Dσ(S) := D(
⋃
τ<σ

Dτ (S)).(22)

Dω1(S) is a fixed point of D, where ω1 is the first uncountable ordinal. In
particular, • •Dω1(S) ⊆ Dω1(S).

Definition 6. Let SA and SB be sets of λµ-terms of type A and B, respectively.
Then the set SA → SB of λµ-terms of type A → B is defined by the following
two-step process:

L(SA, SB) := {λαA.M |∀N ∈ SA,M [N/αA] ∈ SB}(23)

SA → SB := Dω1(L(SA, SB))(24)

Definition 7. Let (ti)i∈I be a non-empty family of first-order terms, and for each
i ∈ I let Si be a set of λµ-terms of type A[ti/x]. We define the set

∧
i∈I

1st−ord.

Si of

λµ-terms of type ∀xA as follows.∏
i∈I

1st−ord.

Si := {λx.M |∀i ∈ I,M [ti/x] ∈ Si}(25)

∧
i∈I

1st−ord.

Si := Dω1(
∏
i∈I

1st−ord.

Si).(26)

Though A does not appear in the notation, the definition of
∧

i∈I
1st−ord.

Si may depend

on the choice of A and x.

Definition 8. Let (Ti)i∈I be a non-empty family of abstraction terms, and for each
i ∈ I let Si be a set of λµ-terms of type A[Ti/X]. We define the set

∧
i∈I

abstr.

Si of
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λµ-terms of type ∀XA as follows.∏
i∈I

abstr.

Si := {λX.M |∀i ∈ I,M [Ti/X] ∈ Si}(27)

∧
i∈I

abstr.

Si := Dω1(
∏
i∈I

abstr.

Si).(28)

As in the previous definition, the definition of
∧

i∈I
abstr.

Si may depend on the choice

of A and X.

Definition 9. For a proposition A, RA is the smallest set which satisfies the condi-
tions stated below. If R ∈ RA, we say that R is a reducibility candidate of proposi-
tion A. In keeping with our distinction between types and propositions, reducibility
candidates are defined only for propositions.

(1) If A is atomic or of the form Xt1 · · · tn, then Dω1(VA) ∈ RA.
(2) If A ∈ RA and B ∈ RB, then A → B ∈ RA→B.
(3) Let (ti)i∈I be a non-empty family of first-order terms, and for each i ∈ I let
Ri be a reducibility candidate of type A[ti/x]. Then

∧
i∈I

1st−ord.

Ri ∈ R ∀xA.

(4) Let (Ti)i∈I be a non-empty family of abstraction terms, and for each i ∈ I
let Ri be a reducibility candidate of proposition A[Ti/X]. Then

∧
i∈I

abstr.

Ri ∈
R ∀XA.

Note that a reducibility candidate R can be written as Dω1(S) for a set S of λµ-
terms such that no element of S begins with µ.

Proposition 3. Let R be a reducibility candidate.

(1) R is non-empty, and all λµ-terms in R are strongly normalizable.
(2) If M ∈ R and M ⇒1 N , then N ∈ R.
(3) For M ∈ •R and N ∈ R, [M ]N ∈ ⊥.

The proof of the proposition uses induction on the construction of the candidate
R. Each step of the induction is broken up into Lemmata 4, 5, 6, and 7. Before
proceeding with the proof of clauses 1 and 2 of the proposition, we show that clause
3 can be derived from clauses 1 and 2.

Lemma 2. Let S be a set of λµ-terms which does not begin with µ. We assume
that all terms contained in S has a same type. Let P = Dω1(S). Then we have
P = Cl(S ∪ • • P ).

Proof. The inclusion from right to left is immediate, by the closure property of Cl
and the fact that • • P ⊆ P and S = D0(S) ⊆ Dω1(S) = P . To see the inclusion
from left to right, we let R = Cl(S ∪ • • P ) and prove that Dσ(S) ⊆ R for all
ordinals σ ≤ ω1. The proof is by induction on σ. Clearly, D0(S) (=S) ⊆ R, so
the base case holds. Let σ be an ordinal such that 0 < σ ≤ ω1. By the induction
hypothesis, Dτ (S) ⊆ R for all τ < σ. Let Q be

⋃
τ<σD

τ (S). Then we have Q ⊆ P .
By the monotonicity of the •• operator, • • Q ⊆ • • P . Since • • P ⊆ R, we have
• •Q ⊆ R. Hence Q∪••Q ⊆ R. By the closure property of Cl, Cl(Q∪••Q) ⊆ R,
so Dσ(S) = D(Q) = Cl(Q ∪ • •Q) ⊆ R. �

In the remainder of the paper, we sometimes use Lemma 2 without mention.
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Lemma 3. If a reducibility candidate R satisfies clauses 1 and 2 of Proposition 3,
then for all M ∈ •R and N ∈ R, [M ]N ∈ ⊥.

Proof. As noted in Definition 9, R can be written as Dω1(S) for a set S of λµ-terms
such that no element of S begins with µ.

Assume M ∈ •R and N ∈ R. To complete the proof of the lemma, it suffices to
show that every K such that [M ]N ⇒1 K is strongly normalizable. We consider all
possibilities for the reduction of [M ]N . We use induction on w(M) + w(N). N is
strongly normalizable by the clause 1 of Proposition 3. M is strongly normalizable
since R is not empty. (See the clause 3 of Definition 5.)

Case i. K is of the form [M ′]N ′, where M ⇒ M ′ and N ⇒ N ′. In this case,
M ′ ∈ •R by the definition of •, and N ′ ∈ R by clause 2 of Proposition 3. By the
induction hypothesis, K ∈ ⊥, since w(M ′) + w(N ′)< w(M) + w(N).

Case ii. M ≡ µα.M1 and K ≡M1[N/x]. Since M ∈ •R and N ∈ R, M1[N/x] ∈
⊥ by the definition of •.

Case iii. N ≡ µα.N1 and K ≡ N1[M/α]. Since R = Cl(S ∪ • • R) and S does
not contain a λµ-term beginning with µ, N must be an element of • • R. Hence
N1[M/α] ∈ ⊥. �

Lemma 4. If R = Dω1(VA) for an atomic proposition A, then Proposition 3 holds.

Proof. Non-emptiness and strong normalizability are easy. To prove the second
clause, let σ be the least ordinal such that M ∈ Dσ(VA). The proof is by induction
on σ.

If σ = 0, then M is a λµ-variable and the conclusion of the lemma follows. If
σ > 0, then either M has a form of application or M ∈ • •

⋃
σ1<σ

Dσ1(VA). By

the definitions of Cl and •, the conclusion of the lemma holds in either case. (Note
that •-, •1-, and •2-reduction cannot be applied to the outermost µ.) �

Lemma 5. Let A,B be reducibility candidates that satisfy all three clauses of Propo-
sition 3. Then R = A → B is non-empty and the following hold of all M ∈ R.

(1) M is strongly normalizable.
(2) If M ⇒1 N , then N ∈ R.
(3) If N ∈ A, then MN ∈ B.

Proof. Again, non-emptiness is easy. Let D(σ) be Dσ(L(A,B)). We prove, by
induction on ordinals σ ≤ ω1, that for all M ∈ D(σ), M is strongly normalizable
and if M ⇒1 N , then N ∈ D(σ). We show further that MN ∈ B for every N ∈ A.

If σ = 0, then the conclusion follows from the definition of L(A,B) and the facts
that A is not empty and B satisfies clauses 1 and 2 of Proposition 3. Assume σ > 0.
First we prove that M is strongly normalizable and if M ⇒1 N , then N ∈ D(σ).
If we prove this for the case where M ∈ • •

⋃
σ1<σ

D(σ1), the conclusion for the
general case follows from the definition of Cl. Hence assume that M is of the form
µα.M1. We denote

⋃
σ1<σ

D(σ1) by S.
M1 is strongly normalizable since •S is not empty. We further use induction on

w(M1) and show that each λµ-term M ′ such that M ⇒1 M ′ is strongly normaliz-
able and that M ′ ∈ D(σ). If the reduction does not consist of a •-rule applied to the
outermost µ, then M ′ ≡ µα.M ′1 ∈ • • S ⊆ D(σ). By the induction hypothesis (for
the induction on w(M1)) and the fact that w(M ′1) < w(M1), M ′ is strongly normal-
izable. Hence assume that M is reduced by the •-rule applied to the outermost µ.
Then M ′ = λβ.µγ.M1[µδ.[γ]δβ/α]. To prove that M ′ ∈ D(σ) and M ′ is strongly
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normalizable, choose some σ1 < σ and let N ∈ D(σ1). In addition, let L ∈ A and
K ∈ •B. Note that NL ∈ B, by the induction hypothesis (for the induction on
σ). Hence [K]NL ∈ ⊥. Since σ1 < σ and N was an arbitrary element of D(σ1),
we have µδ.[K]δL ∈ •S. Using the hypothesis that µα.M1 ∈ • • S, we see that
M1[µδ.[K]δL/α] ∈ ⊥. Since K ∈ •B, we get µγ.M1[µδ.[γ]δL/α] ∈ • • B ⊆ B. This
means that M ′ ∈ L(A,B), hence that M ′ is strongly normalizable and M ′ ∈ D(σ).

Next, we prove that MN ∈ B for each N ∈ A. As noted in Definition 9,
A = Dω1(X) for some set X of λµ-terms. We can assume that X does not contain
a λµ-term beginning with µ. Let τ be the least ordinal such that N ∈ Dτ (X). By
induction on τ and w(M) + w(N), we will prove that if MN ⇒1 L, then L ∈ B.
This is precisely the condition that MN ∈ B.

Case i. L ≡ M ′N ′, and either (M ⇒1 M ′ and N ≡ N ′) or (M ≡ M ′ and
N ⇒1 N ′). The conclusion follows from the induction hypothesis (for the induction
on w(M) + w(N)).

Case ii. M ≡ λα.M1 and L ≡ M1[N/α]. Since M ∈ L(A,B), the conclusion
follows.

Case iii. N is of the form µα.N1 and L is obtained from reduction of the
outermost redex. Then L is of the form µβ.N1[µγ.[β](Mγ)/α]. Choose some τ1 < τ ,
and let Q ∈ Dτ1(X). Furthermore, let P ∈ •B. By the induction hypothesis
(for the induction on τ), we have MQ ∈ B. By reasoning similar to that used
above, it follows that µγ.[P ](Mγ) ∈ •

⋃
τ1<τ

Dτ1(X). Since N begins with µ, N ∈
••

⋃
τ1<τ

Dτ1(X). We thus have N1[µγ.[P ](Mγ)/α] ∈ ⊥, hence that L ∈ ••B ⊆ B.
�

Lemma 6. Let I be a non-empty index set such that for each i ∈ I, Ri is a
reducibility candidate of proposition A[ti/x], and let R =

∧
i∈I

1st−ord.

Ri. Assume

that for each i ∈ I, Ri satisfies all the clauses of Proposition 3. Then R is non-
empty, and the following hold of all M ∈ R.

(1) M is strongly normalizable.
(2) If M ⇒1 N , then N ∈ R.
(3) Mti ∈ Ri.

Proof. Again, non-emptiness is easy. Let D(σ) be Dσ(
∏

i∈I
1st−ord.

Ri). We prove, by

induction on σ ≤ ω1, that for all M ∈ D(σ), M is strongly normalizable and if
M ⇒1 N , then N ∈ D(σ). We show further that Mti ∈ Ri for each i ∈ I.

If σ = 0, then the conclusion follows from the facts that I is not empty and for
each i ∈ I, Ri satisfies all the clauses of Proposition 3. The fact that Mti ∈ Ri
for each i ∈ I is obtained from the definition of

∏
i∈I

1st−ord.

Ri. Assume σ > 0. First

we prove that M is strongly normalizable and if M ⇒1 N , then N ∈ D(σ). If we
prove this for the case where M ∈ • •

⋃
σ1<σ

D(σ), the conclusion for the general
case follows from the definition of Cl. Hence assume that M is of the form µα.M1.
We denote

⋃
σ1<σ

D(σ1) by S.
Since all λµ-terms in S are strongly normalizable by the induction hypothesis,

M1 is strongly normalizable. We further use induction on w(M1) and show that
every M ′ such that M ⇒1 M ′ is strongly normalizable and that M ′ ∈ D(σ). If the
reduction rule is not the •1-rule for the outermost µ, then M ′ ≡ µα.M ′1 ∈ • • S ⊆
D(σ). By the induction hypothesis (for the induction on w(M1)) and the fact that
w(M ′1) < w(M1), M ′ is strongly normalizable. Hence assume that M is reduced by
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the •1-rule for the outermost µ. Then M ′ = λx.µγ.M1[µδ.[γ]δx/α]. Choose some
σ1 < σ, and let N ∈ D(σ1). Also, let K ∈ •Ri. By the induction hypothesis (for the
induction on σ), Nti ∈ Ri; hence, [K]Nti ∈ ⊥. Since σ1 < σ and N ∈ D(σ1) ⊆ S,
we have µδ.[K]δti ∈ •S. Furthermore, M1[µδ.[K]δti/α] ∈ ⊥, because µα.M1 ∈ ••S.
Since K ∈ •Ri, we see that µγ.M1[µδ.[γ]δti/α] ∈ • • Ri ⊆ Ri. This means that
M ′ ∈

∏
i∈I

1st−ord.

Ri, hence that M ′ is strongly normalizable and M ′ ∈ D(σ).

Next, we prove that Mti ∈ Ri. We will show that N ∈ Ri for all N such that
Mti ⇒1 N . The proof is by induction on w(M).

Case i. N ≡M ′ti and M ⇒1 M ′. By the induction hypothesis and the fact that
w(M ′) < w(M), the conclusion follows.

Case ii. M ≡ λx.M1 and N ≡ M1[ti/x]. Since M ∈
∏

i∈I
1st−ord.

Ri, we have the

conclusion.
There are no other possibilities for M and N . �

Lemma 7. Let I be a non-empty index set such that for each i ∈ I, Ri is a
reducibility candidate of proposition A[Ti/X], and let R =

∧
i∈I

abstr.

Ri. Assume that

for each i ∈ I, Ri satisfies all three clauses of Proposition 3. Then R is non-empty,
and the following hold of all M ∈ R.

(1) M is strongly normalizable.
(2) If M ⇒1 N , then N ∈ R.
(3) MTi ∈ Ri.

Proof. Analogous to the proof of the previous lemma. �

Proof. Proof of Proposition 3 The proof is by induction on the construction of R,
together with Lemmata 4, 5, 6, and 7. �

Using Proposition 3 and Lemmata 4, 5, 6 and 7, we can prove strong normaliza-
tion by the method of reducibility candidates.

Definition 10. For each abstraction term T = λx1 · · ·xnA, a complex of kind
T is a map which sends n-tuples of first-order terms 〈t1, . . . , tn〉 to elements of
RA[t1/x1,...,tn/xn]. CT denotes the set of all complexes of kind T . Cn denotes the
union of CT over all n-ary abstraction terms T .

Definition 11. Let ξ be a map which sends first-order variables to first-order terms,
and n-ary predicate variables to elements of Cn. We call such a map an interpre-
tation. We extend ξ to all first-order terms t by

(29) ξ(t) = t[ξ(x1)/x1, . . . , ξ(xn)/xn],

where {x1, . . . , xn} = FV (t). Moreover, we extend ξ to arbitrary types and abstrac-
tion terms as follows. Let ⊥ be the set of all strongly normalizable λµ-terms of type
⊥, let VA be the set of all λµ-variables and constants of type A, and let T be the
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set of all first-order terms.

ξ(t1 = t2) = Dω1(Vξ(t1)=ξ(t2))(30)

ξ(Xt1 · · · tn) = ξ(X) < ξ(t1), . . . , ξ(tn) >(31)

ξ(A→ B) = ξ(A)→ ξ(B)(32)

ξ(∀xA) =
∧
t∈T

1st−ord.

ξ[t/x](A)(33)

ξ(∀XnA) =
∧
C∈Cn

abstr.

ξ[C/Xn](A)(34)

ξ(⊥) and ξ(•A) for a proposition A are defined as ξ(⊥) = ⊥ and ξ(•A) = •ξ(A)
respectively.
ξ[t/x] is defined in such a way that for all first-order variables except x, it gives

the same results as ξ; and for x, ξ[t/x](x) = t. The definition of ξ[C/Xn] is similar.
ξ(λx1 · · ·xnA) is defined as the complex which sends the tuple 〈t1, . . . , tn〉 to

ξ[t1/x1, . . . , tn/xn](A).

In what follows, we use the abbreviation e for a finite sequence e1, . . . , en.

Proposition 4. Let M be a λµ-term of type C with free first-order variables
x1, . . . , xl, free predicate variables X1, . . . , Xm, and free λµ-variables αC1

1 , . . . , αCn
n .

Let ξ be an interpretation, and let ti be ξ(xi) for i = 1, . . . , l. Assume that for each
j with 1 ≤ j ≤ m, ξ(Xj) ∈ CTj

for some abstraction term Tj. Choose Nk ∈ ξ(Ck)
for k = 1, . . . , n. Then we have

(35) M [ t/x][T/X][N/α] ∈ ξ(C).

Proof. By induction on the construction of M .
Case i. M ≡ ai (an axiom). Since ξ(C) = Cl(S ∪ • • ξ(C)) for some S and by

definition of Cl, ai ∈ ξ(C).
Case ii. M ≡ αi. The conclusion of the proposition is clear from the assumption

that Ni ∈ ξ(Ci).
Case iii. M ≡ µα.M1. Here, M1[ t/x][T/X][N/α,N/α] ∈ ⊥ for N ∈ ξ(•C), by

the induction hypothesis. Hence we have µα.M1[ t/x][T/X][N/α] ∈ ξ(C).
Case iv. M ≡ [M1]M2. The conclusion of the proposition follows from Proposi-

tion 3.
Case v. M ≡ λα.M1, M ≡ λx.M1, or M ≡ λX.M1. The conclusion of the

proposition follows from the construction of ξ. For example, let M ≡ λX.M1.
Then C is of the form ∀XA1. Let T be an abstraction term, and let C be a complex
of type T . By the induction hypothesis applied to M1, M1[ t/x][T/X, T/X][N/α] ∈
ξ[C/X](A1). Note that since the types of the individual components of α do not
contain X as a free predicate variable, substitution of T for X does not alter the
types of the λµ-variables in α. By renaming the bound predicate variable X in
M , we can safely assume that N does not contain a free occurrence of X. Hence,
we can infer that M1[ t/x][T/X][N/α][T/X] ∈ ξ[C/X](A1). The conclusion follows
from the definition of ξ(∀XA1).

Case vi. M ≡ M1M2, M ≡ M1t, or M ≡ M1T . The conclusion of the proposi-
tion follows from Lemmata 5, 6, and 7. For example, consider the case M ≡M1T .
Then C ≡ A′[T/Xr] and M1 is of type ∀XrA′. (r is the arity of X.) Let T̃ be

T [t/x][T/X], and let M̃1 be M1[ t/x][T/X][N/α]. By the induction hypothesis,
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M1 ∈
∧
C∈Cr

abstr.

ξ[C/X](A′). By Lemma 7, we have M̃1T̃ ∈ ξ[ξ(T )/X](A′). Since

M̃1T̃ = M1T [ t/x][T/X][N/α] and ξ[ξ(T )/X](A′) = ξ(A′[T/X]), the conclusion of
the proposition follows. �

In the above proposition, choose ξ so that ξ(xi) = xi for i = 1, . . . , l, and let
ξ(Xj) ∈ Cλx1···xkj

.Xjx1···xrj
for j = 1, . . . ,m, where rj is the arity of Xj . Further,

let Nk be αk for k = 1, . . . , n. Then we have M ∈ ξ(C). By Proposition 3, we have
the following theorem.

Theorem 2. All λµ-terms are strongly normalizable.

I am grateful to Ken-etsu Fujita, Ryu Hasegawa, Charles Stewart, and Makoto
Tatsuta for their helpful comments and discussion. I also wish to thank Georgia
Martin for carefully reading the manuscript and helping to improve the presenta-
tion.
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