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Abstract—Because human movement spreads infection, and
mobility is a good proxy for other social distancing measures,
human mobility has been an important factor in the COVID19
epidemic. Therefore, the control of human mobility is one of the
countermeasures used to suppress an epidemic.

As a notable feature, COVID19 has had multiple waves (sub-
epidemics). Understanding the causes of the start and end of each
wave has important implications for a policy evaluation and the
timely implementation of countermeasures. Some of the waves
have been correlated with the changes in mobility, and some
can be attributed to the emergence of new variants. However,
the start and end of some of the waves are difficult to explain
through known factors.

To evaluate the effect of human mobility, we built a stochastic
model incorporating individual movements of 500,000 people
obtained from anonymized, user-approved location data of smart-
phones throughout Japan. Instead of using aggregate values of
human mobility, our model tracks the movements of individuals
and predicts the infection of all persons within the entire
country. Although the model only has a single static parameter,
it successfully reproduced the occurrence of three waves of the
number of confirmed cases within the study period of March
01 to December 31, 2020 in Japan. It was previously difficult to
explain the end of the second wave and the start of the third
wave in the study period by human mobility alone. Our results
suggest the importance of tracking individual movements instead
of relaying the aggregate values of human mobility.

Index Terms—Big data, location data, COVID-19, epidemiol-
ogy, simulation.

I. INTRODUCTION

the outbreak of COVID-19 (caused by SARS-CoV-2) has
become a pandemic with a scale comparable to that of the
Spanish flu. COVID-19 has caused 6.41 million confirmed
deaths worldwide as of August 4, 2022, [1]. An excess mortal-
ity of 18.2 million [2] individuals, attributable to COVID-19,
was estimated from January 1, 2020 to December 31, 2021.

Facing this crisis, governments implemented unprecedented
measures such as lockdowns, border closures, and mask man-
dates. However, these countermeasures have greatly restricted
the lives of citizens and placed a heavy burden on national
economies. Therefore, an efficient and timely implementation
of such countermeasures is extremely important.

A mathematical model of the epidemic can be an important
tool for modeling the efficiency and timeliness of a counter-
measure policy before it is implemented. As another benefit
of a mathematical model, it can be used to predict the future
course of an epidemic under a specific scenario, allowing us
to allocate the necessary healthcare resources in advance.

To address these demands, many mathematical models
have been proposed, ranging from simple SIR models to
complex models that incorporate factors representing human
mobility [3], [4], [5]. However, most of these models suffer
from serious shortcomings. One of the notable features of the
current COVID-19 pandemic is that it occurred in multiple
waves. Understanding the causes of the start and end of each
wave and predicting the timing and size of the next wave are
important with direct implications on the choice and timing
of an intervention. Unfortunately, most mathematical models
proposed thus far only predict a single wave of an epidemic or
require changes to the model parameters to explain multiple
waves. Because required changes to the model parameters are
unknowable before a wave arrives, we cannot use such models
to access the efficiency of a policy and predict the timing and
scale of a future wave.

In this paper, we propose a stochastic model using
anonymized, user-approved location data from 500,000 smart-
phones throughout Japan. Unlike other models that rely on
the aggregate values of human mobility such as Google’s
Community Mobility Reports and Apple’s mobility data, our
model tracks the movement of individual persons and predicts
the infection of each individual. Applying our model to the
epidemic in Japan from March 1, 2020 to December 31,
2020, our model successfully reproduced the occurrence of
three waves in terms of the number of confirmed cases using
mobility data alone, without changing a model parameter. The
end of the second wave and the start of the third wave seem
difficult to explain using the aggregate mobility index, and our
results suggest the importance of the movement of individuals.
It is surprising that a model with only a single parameter,
which does not change over time or location, can predict the
long-term (10 month) behavior of the epidemic.



Because our model has only a single parameter, its pre-
diction does not fully fit the observed data. Nevertheless, our
study shows the effectiveness of approaches using large-scale
location data and possible future enhancements.

The remainder of this paper is organized as follows. Sec-
tion II discusses previous related studies. Section III introduces
status of COVID-19 and countermeasures implemented in
Japan. In Section IV, we introduce the proposed method. Sec-
tion V presents the experimental results. Finally, Section VI
provides some concluding remarks and discusses possible
future areas of research.

II. RELATED WORK

Because our study focuses on a model based on mobility,
we discuss previous studies concerning mobility with regard
to COVID-19. Because moving people spread the infection of
the virus, mobility is a direct cause of epidemic, as well as a
good proxy of social distancing in general.

The correlation between the epidemic and the aggregate
mobility index has been discussed [6], [7], [8], [9], [10].
Kraemer et al. [6] showed that human mobility from Wuhan
accurately predicted the epidemic in other parts of China
during the early stage of the outbreak, whereas the correlation
decreased after the mobility from Wuhan was restricted. Yabe
et al. [7] found that Google’s COVID-19 Community Mobility
Reports [11] correlated the effective reproduction rate Rt in
Tokyo during the early stage of the epidemic (March 22 to
April 15), strong enough for containment of the epidemic.
Nagata et al. found that changes in mobility, particularly in
nighttime activities, was effective for containment in Japan
during the early stage of the epidemic (March to July). These
studies suggest that human mobility is an important factor in
the COVID-19 pandemic.

By contrast, Nouvellet et al. [9] and Gatalo et al. [10] found
that the correlation between the mobility index and epidemic
was reduced after the initial stage of the epidemic in many
countries and concluded that social distancing measures other
than mobility restriction were important in controlling the
epidemic.

In our study, the model predicted that the number of cases
would fluctuate (Figs. 3, 4, 5 and 6) despite the relatively
high mobility index after July 2020 in Japan (Fig. 1). This
suggests that despite Nouvellet et al. and Gatalo et al. finding
a decoupling between the mobility index and epidemic, the
mobility at a finer granularity may still be an important factor.

There are many studies that have used mathematical models
incorporating human mobility [12], [13], [14], [15], [16], [17],
[18], [19], [20], [21], [22], [23], [24], [25], [26], [27], [28],
[29], [30] With the exception of [12], [13], [23], [24], most of
these studies do not address the existence of multiple waves.
Whereas Kexiras and Neofotistos [13] and Silva et al. [23]
explained multiple waves by changing the model parameters,
our model can explain the multiple waves of an epidemic
using a single constant parameter throughout the entire period
under consideration. Liu and Yamamoto [24] also explained
multiple waves in Japan by changing parameters. Their model

used an aggregate mobility index whereas our model uses the
movement of individuals. Rahmandad et al. built a model
in which mobility is endogenous and explains multi-wave
behavior. By contrast, our model uses the observed movement
of individuals as an exogenous variable. Therefore, our model
is more suitable for evaluating the impact of mobility changes,
observed or planned.

As our approach, some studies incorporate fine-scale mo-
bility data. However, none of them performed long-term (10
moths) simulation and reconstructed the multiple waves of
the epidemic. Therefore, our study would be more useful
to access the effect of fine-scale mobility to the epidemic,
in particular, the occurrence of the multiple wages. Fan et
al. [30] and Yang et al. [29] proposed a city-wide individual-
based model. Both models consists of the contagion and
movement stages. In contagion stage, diseases propagate in
each geographic grid. In movement state, the human move-
ment spreads diseases to different grids. In our model, meta-
populations are people having similar movements, while Fu et
al. and Yang et al. used geological grids as meta-populations.
Further, we used real-time mobility data while they used
the past data. Chang et al. [31] uses a meta-population SIR
model, in which each meta-population consists of a census
block group and its contact with another meta-population is
derived from POS visit data. Chang et al. used the different
definition of meta-populations (census block groups) then us.
Aleta et al. [15] proposed an individual-based model which
tracks each synthetic individual by detailed POI visit data.
Kerr et al. [26] also proposed an individual-based model
using synthetic population and contact network to evaluate the
effect of different interventions. Chiba [21] used a synthetic
population and its movement based on the census and location
data of mobile phones and evaluated the effectiveness of
government interventions. Both used synthetic individuals, not
real individuals, Some works used fine-scale, individual-based
large-scale mobility data probided by Jiang et al. [28] and Cao
et al. [27] used real-time data provided Blogwatcher Inc., the
same company as ours. Unlike us, they treated each prefecture
as a single meta-population and the mobility data are used to
compute the movement between prefectures.

Numerous theoretical studies have focused on the spatiotem-
poral behavior of infectious diseases. For example, Weng and
Zao [32] considered wave-like propagation, and Sun [33]
considered the formation of spatial patterns. Such studies
might be related to the wave-like behavior of our model.

III. CONTEXT

Because our research focuses on 2020, we only discuss
the status in Japan during this period. We exclude the years
2021 and onward because new variants and vaccinations
complicated the modeling.

Figure 1 shows the number of new infections based on the
infection dates estimated in Section IV-A2 and the changes in
mobility in transit stations according to Google’s COVID-19
community mobility report [11], both for Tokyo, a prefecture
with largest population in Japan. Three waves were observed
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Fig. 1. New infection and mobility in Tokyo

in terms of the number of infections. The first wave started
in the middle of March and ended at the end of April. The
second wave began around the beginning of June and ended
at the end of August. The third wave began at the beginning
of November.

A large decrease in mobility was observed from April to
June. After the end of June, mobility remained relatively high,
except for a small drop around the first half of August, which
corresponds to the summer vacation period.

From April 7 to May 25, the central government declared
a state of emergency. During this state of emergency, the
government asked citizens to stay at home and businesses
to close or shorten their operating times. These measures
were not enforced because there is no legal system to enable
their enforcement. However, these non-compulsory measures
significantly reduced the mobility [7], which was sufficient for
containing the epidemic. The state of emergency corresponds
to the drop in mobility from April to June. After the end of
the emergency period, the mobility slowly recovered. During
the study period, the government asked the citizen to avoid
crowded places, wear masks, and refrain from long trips,
particularly during vacation periods.

The start and end of the first wave can be easily explained by
the introduction of the virus by people returning from Europe
and the declaration of the state of emergency. In addition,
the start of the second wave can easily be explained by the
recovery of mobility. However, the end of the second wave is
difficult to explain because mobility remained relatively high
after July. Furthermore, it is difficult to explain the relatively
low infection rate around September and October and the start
of the third wave by mobility alone.

IV. METHODS

A. Data acquisition and preprocessing

1) Location data: We obtained anonymized, commercially
available location data for mobile devices, collected by Blog-
watcher Inc., from the user-approved location functions of
mobile applications. The location data consist of an encrypted

ADID using the cryptographic hash function, latitude, longi-
tude, and timestamp of an observed smartphone location. An
ADID represents either a Google Advertising ID (ADID) or
Identifier For Advertising (IDFA) specified by Apple, which is
unique to each smartphone but can be randomly reset. Only
first two authors handled the raw location data. The institute
implements a strict measure of privacy protection, based on
the Japanese Act on the Protection of Personal Information.

We have location data for more than five million smart-
phones per day, during the study period. However, not all
devices are suitable because some ADIDs may have changed
during the study period. Therefore, we only used devices
whose ADIDs were observed in the first and last months of the
study period. Furthermore, the locations of many smartphones
are infrequently observed. We therefore only used smartphones
whose locations were observed once per hour on average. To
reduce the memory consumption, we sampled 500,000 devices
from the selected devices. Furthermore, we assumed that each
participant had only a single smartphone.

Our model uses a contact matrix, which indicates the
number of hours each pair of individuals i and j stayed within
the same grid cell of approximately 200m×200m in size based
on the i-th column and j-th row of a matrix of a specified day.
To obtain the contact matrices, we computed the grid cell and
time, in 1 h units, for each person. If the location of a person
was not observed for a particular hour, we assumed that the
person stayed at the last observed location. If the location
of a person was observed more than twice, the location was
randomly chosen. We then tallied the number of hours in
which the i-th and j-th persons were in the same grid cell
for i and j.

We assumed that the i-th person lived in prefecture p
during the study period if i was observed most frequently in
prefecture p.

2) Number of infection incidents: We used the number
of infections published by the public broadcaster NHK [34],
which contains the reported number of cases as counted by
the reported date for each prefecture. However, we wanted
to apply our model to the number of infection incidents
as counted by the infection dates, not the reported number
of cases, because the reported number is delayed by the
incubation period and the reporting process. Furthermore, the
reported number fluctuated spuriously on weekdays because
of testing and reporting practices.

To remove the weekday bias of the reported numbers, we
took seven-day moving averages of the reported numbers.

We then estimated the number of cases counted based on
the infection date using the standard back-projection technique
[35]. For this purpose, we used the dataset containing the
onset and confirmed and reported dates of individual patients,
obtained from expert members of the National COVID-19
Cluster Task Force in Japan, who compiled publicly avail-
able information on positive polymerase chain reaction cases
released by each local authority. We estimated the distribution
of delays from onset to reporting by fitting a log-normal
distribution to delays in the dataset. We applied a back-



projection using the log-normal distribution and obtained the
number of cases of onset on each day. We conducted a further
back-projection based on the incubation period [36] to estimate
the number of infections each day.

We referred to the number of cases counted by the infection
date as the observed number of cases.

3) Reporting rate: Because unreported infections are
known to be important for the spread of infection [14], our
model incorporates an under-reporting.

We estimated the reporting rate based on the number of
cumulative deaths and the infection fatality rate, because the
mortality would be more accurately reported. We assumed that
the reporting rate remained constant during the study period.
The number of cumulative deaths caused by COVID19 was
3414 by the end of 2020, whereas the cumulative number
of reported cases was 228 418 [37]. The infection fatality
rate was estimated to be 0.68% [38]. Using these figures,
the true number of cumulative infections was estimated to
be approximately 502 058, indicating a reporting rate of
approximately 50%. This 50% reporting rate is consistent with
the ratio of asymptomatic to total number of cases [39].

4) Epidemiological parameters: Our model used the epi-
demiological parameters determined in previous studies.

The generation time is the interval between when person A
is infected and when A infects another person B. We assumed
a distribution of generation time as specified in EpiNow2 [40],
which is based on Ganyani et al.’s approach [41] but modified
using the incubation period obtained by Lauer et al. [36].

The viral load of each patient differs significantly by several
orders of magnitude. We modeled the distribution of the viral
load based on a gamma distribution, the dispersion of which
was determined by Endo et al. [42].

B. Mathematical model

Because we sampled approximately 500 000 devices out
of a total population of approximately 125 800 000, there
are approximately 252 people represented by each sampled
device, which we call the meta-population of the sample.
Contacts were assessed on a meta-population basis; that is,
we assumed that all persons in the same meta-population had
the same contact time with any given person in any other
meta-population (Fig. 2).

Our model is a stochastic epidemiology model that ex-
plicitly addresses individual transmissions. Variables in bold
indicate vectors or matrices. For example, I is a vector whose
ith element is I[i]. Let S be the ratio of the total population

Meta-population 
represented by a single
GPS device

All persons in a meta-
population are assumed to 
contact persons in another 
meta-population in the same 
duration of time 

4 hour

4 hour

2 hour 2 hour

Fig. 2. All persons in a meta-population as represented by a single device
contacting persons in another meta-population for the same duration of time.

of Japan to the number of sampled smartphones.

L[d] ∼ Gamma(D,D/I[d])

V [d] =

K∑
k=1

g[k]L[d− k]

F [d] = M [d]V [d]

I[d+ 1] ∼ Binomial(S −C[d], 1− eβF [d])

C[d+ 1] = C[d] + I[d]

Ip[d] ∼ Binomial

 ∑
i lived p

I[d][i], q


Here, I[d][i] is the number of new infections occurring in
meta-population i on day d, and L[d][i] is the sum of the viral
loads of the people in meta-population i who were infected
on day d. Note that the sum of the gamma distributions with
dispersion D is the gamma distribution with dispersion D. In
addition, V [d][i] is the total viral emission of meta-population
i on day d; g[k] is the distribution of the generation time;
and M [d][i, j] is the contact matrix on day d, indicating the
number of hours that i and j remained in the same location
grid cell. M is precomputed from the location data, and thus
is given outside the model. Next, F [d][i] is the viral emission
to which a person in a meta-population i is exposed on day d.
I[d+1][i], the number of infected people in meta-population i
on day d+1, is determined through a sampling of people who
are not yet infected in meta-population i on day n based on
the probability determined through F [d][i] and the infection
rate β. C[d] is the number of cumulative infections. Finally, p
is a prefecture, and Ip[d] is the observed number of infected
people in prefecture p on day d. q denotes the reporting rate.

The only unknown parameter in the model is β. The values
of D and g[k] were determined based on previous studies,
and M was determined using location data. Other variables,
L,V ,F , I,C, are endogenous. We assigned I[−K], I[−K+
1], · · · , I[−1] as the initialization conditions for the model.
The value of I[−k] is determined as follows:

I[−k][i] ∼ Binomial(S, Ip[−k]/Pp) (1)



if i lives in prefecture p, and Pp is the population of p.

C. Parameter estimation

In our model, only the parameter β is unknown. We assume
that β is constant across the study period and throughout
Japan. We determine β by fitting the observed number of infec-
tion cases in each prefecture p using a Bayesian optimization
based on the tree Parzen estimator (TPE) [43].

To define a loss function, we assume that I[d][i] and I[d][j]
are probabilistically independent, although this assumption is
unlikely to be correct. Subsequently, the number of new infec-
tions in prefecture p on day d follows a Poisson distribution.

Ip[d] ∼ Poisson

 ∑
i lives p

E[I[d][i]]

 (2)

= Poisson(E[Ip[d]]) (3)

However, it was impossible to determine E[Ip[d]]. Therefore,
we estimated E[Ip[d]] by running the simulations N times
and using Bayesian inference. Let Ip[k][d] be the number
of new infections in prefecture p on day d for the k-th
simulation, and NB be a negative binomial distribution. We
used Gamma(1, 1) as the prior, and the posterior was

Ip[d] ∼ NB

(
1 +

N∑
k=1

Ip[k][d],
1

1 +N

)
. (4)

Let Iobs
p [d] be the observed number of new infections in

prefecture p on day d. We then define the loss function as∑
p,d

logP

(
Iobs
p [d]

∣∣∣ NB

(
1 +

N∑
k=1

Ip[k][d],
1

1 +N

))
. (5)

We call a simulation run a trial, and an optimization process
a study.

D. Implementation and experiment setup

The contact matrices from the location data were computed
using Apache Spark [44]. The epidemiological model was
implemented using Pytorch [45], which utilized a GPU for the
matrix computations. Optuna [46] was used for the parameter
optimization.

To run Spark, we used a cluster of 16 machines equipped
with two 2.4-GHz Intel Xeon Gold 6148 20 core CPUs with
384 GB of RAM. The computation took approximately 1 d.

Optimization was conducted on a single machine with the
same CPU and memory as above, along with four GPUs
(NVIDIA V100 for NVLink 15 GiB HBM). There were four
processes, each conducting an optimization using a single GPU
communicating through a database (SQLite). We limited the
time for optimization to 2 d.

For each simulation, we set K = 14 to compute V [d] and
for the initialization. The possibility of a generation interval
of more than 14 d was considered negligible. We used N =
120 simultaneous simulations, as described in Section IV-C,
running 30 simulations as a batch using a GPU at once. We
searched for the optimal β for 0 ≤ β ≤ 1.

We estimated β by fitting the model to three different
periods, March 01 to April 30, March 01 to August 31, and
finally, March 01 to December 31, 2020. The period of March
01 to April 30 corresponds to the first wave, whereas the period
of March 01 to August 31 corresponds to the first and second
waves. The period of March 01 to December 31 is the entire
study period, which contains the first to third waves.

Using β obtained by the optimization, we reproduced or
predict the number of cases, running 120 simulations simulta-
neously. As the optimization, the model was initialized by the
number of cases from 14 to 1 d before March 01, 2020. After
initialization, the model was run without any input from the
observed data.

V. RESULTS

We performed two kinds of experiments. First, we fitted the
model to the observation during the entire observed period,
March 01, 2020 to December 31, 2020 and estimated the
model parameter. A simulation, starting March 01, 2020,
performed using the parameter above and compared to the
observed values. This experiment shows how well our model
can reproduce the observation, thus how well our model
reflects the underling mechanism of the epidemic. The result
of the first experiment is presented in Section V-A.

Second, we fitted the model to the observation during the
first wave (March 01 to April 30) and the second wave (March
01 to August 31) and estimated the model parameter. Using the
parameter obtained, we performed the simulation the number
of cases from March 01, 2020 to December 31, 2020 and
compared to the observation. Because this model only used
the part of observation, this experiment shows how useful
our model is for prediction. Because there seems the history
effect in the model, we cannot start the simulation from the
arbitrary point. Instead, we started the simulation from March
01, 2020, when the cases would be randomly scattered across
the country.

A. Reproduction

In this section, we fitted the model to the entire study
period. We simulated the number cases using the model
parameter obtained, and compared to the observation. We ran
five independent studies to obtain the optimized β, and then
chose the best value among those obtained. The optimal beta
is β = 0.000995. A total of 7301 trials were conducted.

Fig. 3 shows the observed and simulated number of cases.
Our model simulated all cases in Japan, and we selected
Tokyo, Hokkaido, and Shimane from among the 47 prefectures
in Japan. Tokyo is the largest population center in Japan and
has experienced a sustained epidemic. Hokkaido is another
population center that has experienced an outbreak. Shimane
is a less-densely populated area. The blue line represents the
number of observed cases. The orange line is the average of
all outputs of the simulations, and the orange band shows the
standard deviation.

We note the following:
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(c) Shimane

Fig. 3. Fit with the observed data

• Regional differences: The model predicted a three-wave
pattern in all prefectures, whereas the observed cases in
Hokkaido had only two peaks, and a single outbreak
occurred in Shimane.

• The period of each wave: The tail of the first wave is
longer, and the start of the second wave is delayed in the
model prediction compared with the observed data.

• Intensity: Although all wave peaks are predicted to be

almost equal, the peaks were increased in the observed
data.

B. Prediction

We also investigated the ability of our model for prediction.
First, we fitted β for the period of March 01 to April 30,
namely, the first wave, and the period from March 01 to August
31, 2020, namely, the first and second waves. The, a value of
β = 0.000946 was obtained by fitting the period from March
01 to April 30, 2020 through 32 044 trials. Similarly a value of
β = 0.000858 was obtained by fitting the period from March
01 to August 31, 2020 using 12 488 trials. Using these β,
we ran the simulations from March 01, 2020 to December
31, 2020 and compared to the observed values. We started the
simulations from March 01, 2020, not from the end of the
periods we used for training, because the history effect seems
to exist in our model.
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(b) Fitted to 2020-03-01 ∼ 2020-08-31

Fig. 4. Prediction using parameters fitted from 2020-03-01 to 2020-04-30
and from 2020-03-01 to 2020-08-31 in Tokyo

Figs. 4, 5 and 6 show the prediction using β optimized for
March 01 to April 30 and March 01 to August 31, 2020. The
predictions of all three prefectures has three wave, as the case
fitted to the entire study period. Because β is different, the
intensity of the predicted epidemic is different.
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(b) Fitted to 2020-03-01 ∼ 2020-08-31

Fig. 5. Prediction using parameters fitted from 2020-03-01 to 2020-04-30
and from 2020-03-01 to 2020-08-31 in Hokkaido

VI. DISCUSSION AND FUTURE RESEARCH

Our model used a single static parameter constant across
time and location. Nevertheless, using the movement data
of individuals, our model can reproduce multiple waves that
previous models using aggregate mobility data did not explain.
This suggests that the use of aggregate mobility data is insuf-
ficient and tracking the movement of individuals is therefore
important.

As expected, the model did not fit the observations because
it had few parameters. However, a simple model is useful
for understanding the underlying mechanisms and possible
improvements.

There are several directions for future research in this area.
We will consider two ways to make our model better fit

and predict the observed data. First, additional parameters
will be introduced into the model. The value of β optimized
for the first and second waves was smaller than that of the
entire period. This suggests that β might have increased during
the study period, possibly through an adherence fatigue not
captured by the mobility. We can introduce a gradual change
of β into the model.
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Fig. 6. Prediction using parameters fitted from 2020-03-01 to 2020-04-30
and from 2020-03-01 to 2020-08-31 in Shimane

As suggested by Nagata et al. [8], β can differ in different
places, which may partially explain the regional differences
described in Section V-A. We can therefore incorporate the
differences in land usage into the model.

We have also improved the epidemiological mechanisms
assumed in the model. In our model, we assume random
mixing in each grid cell; however, this assumption is too
simplistic. For example, in residential areas, people mostly
interact with their family members. Therefore, random mixing
does not occur. Therefore, We may combine the mobility
data with census data such as by Chang [16] for a better
simulation of infection within a family. We may also introduce
a multi-tiered model, such as Atela et al.’s and Chiba’s
approachs [15], [21], which distinguishes four tiers: family,
workplace, community, and school. Furthermore, we may
distinguish the POI inside each grid cell. We can introduce age
and other personal characteristics that are considered important
in epidemiology [47].

Another direction is to make the model genuinely predic-
tive. Currently, location data are obtained by observing real
movements. To predict future epidemics, it will be necessary
to predict the movements of individuals. We can combine our



epidemiological model with an agent-based mobility model.
Because our model does not include variants and vaccina-

tions, it is only applicable to the year 2020. We wanted to
refine our model to incorporate such factors, which would
be useful for investigating the impacts of new variants and
vaccination strategies.

Because our model tracks the movement of individuals,
it can predict the geographic pattern of future epidemics.
Therefore, our model can be useful in determining regional
interventions.

Finally, extending our model to other infectious diseases is
important for preparing for future pandemics.
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