Assurance Carrying Code for
Software Supply Chain

Yutaka Matsuno * , Yoriyuki Yamagata T, Hideaki Nishiharaf, and Yuichiro Hosokawa *
* College of Science and Technology, Nihon University, Japan
Email: matsuno.yutaka@nihon-u.ac.jp
t Cyber Physical Security Research Center, National Institute of Advanced Industrial Science and Technology (AIST), Japan
Email: yoriyuki.yamagata@aist.go.jp, h.nishihara@aist.go.jp
1 Department of Liberal Arts, Gunma Prefectural Women’s University, Japan
Email: hosokawayuichiro@mail.gpwu.ac.jp

Abstract—Modern software systems are composed of software
components supplied by a software supply chain, and it has
become difficult to maintain the dependability of the software
supply chain. To address this problem, we introduce assurance
carrying code, a framework in which every software component
in a software supply chain has its own assurance case. When
integrating a software component into a supply chain, the
stakeholders check (manually or automatically) the assurance
case to determine whether or not the software component is
dependable for the supply chain. We introduce a pattern language
for Goal Structuring Notation (GSN) formalized by A-calculus,
which is used in a theory of functional programming languages
theory.

Index Terms—assurance cases, proof carrying code, formal
languages, \ -calculus

I. INTRODUCTION

Software systems have become increasingly complex. They
contain various components including off-the-shelf software
or open source modules, and connect to external systems
such as cloud systems. Moreover, a system may be modified
continuously. In such situations, it is very difficult to maintain
control of the entire system.

One source of the difficulties is the software supply chain. In
general, it is very costly to obtain information about acquired
software. Third-parties are unwilling to share details of their
products and their development processes (which may have
already been lost), and thus the supply chain network becomes
unclear and uncontrollable. Security risks occurring in supply
chains have been discussed ([1], [2]), and incidents related
to supply chains have been made public recently. In one
incident, vulnerabilities were discovered in a software library
applied to wide-range embedded systems over 20 years [3].
The library was allowed to modify or extend to adapt to users’
products. Therefore, it was difficult to trace its history and
see how wide-spread it is used in detail. In another incident,
malicious software was distributed as regular updates [4].
Attackers tampered with update programs, and the programs
were released on the manufacturer’s download site. These
incidents affected numerous systems including safety-critical
systems, infrastructure controls, government information sys-
tems, and more. Subsequently, in May 2021, US President

Biden signed an executive order that addresses supply chain
security. Furthermore, NIST is revising its Cyber Supply Chain
Risk Management Practices [5].

Assurance cases [6] support accountability in a supply
chain, as assurance cases show clear arguments and evidence
of the dependability of the supply chain. For software supply
chains, we propose Assurance Carrying Code. In the frame-
work, each software component in a supply chain has its own
assurance case, and their assurance cases can be integrated
into one case for the supply chain. To do so, we formalize
assurance cases written in Goal Structuring Notation (GSN)
[6] as a functional programming language, on the basis of
A-calculus.

The literature [6] uses the fundamental concepts of formal
logic and English syntax in defining the GSN method to
improve the expression of arguments. Meanwhile, prominent
applications of A-calculus include logic and linguistics, and
more specifically, proof theory and Montague grammar. Par-
ticularly in the former, the correspondence between A-calculus
and natural deduction has been proven [7]. Thus, it would be
reasonable to formalize assurance cases written in GSN in a
functional programming language based on A-calculus. Such
an approach would open the way for connecting the safety
arguments with key areas (logic, linguistics, and computer
programming).

II. ASSURANCE CARRYING CODE

Proof carrying code [8] is a software mechanism that allows
a host system to verify properties of an application through
a formal proof that accompanies the application’s executable
code. Using proof carrying code as our inspiration, we have
been developing an assurance carrying code system, in which
every software component has its own assurance case. When
system developers integrate the code into a software supply
chain, they can check the assurance case to determine whether
the software code is safe (or secure) to install into the supply
chain or not. The framework for assurance carrying code
is shown in Fig. 1. As shown in the figure, each software
component has its own GSN diagram (attached to the code
or remotely on a database). When integrating a software

G: System is
secure

Supply Chain
PRl S: Argue over
Components
s Automatic/Manual
ystem_ Checking
Integration
G1: Component A

IS secure

Software Component A

Fig. 1. A Framework of Assurance Carrying Code

G1: Component A
is secure

!

G: System is secure

S: Argue over
components

G1: Component A
is secure

G: System is secure

S: Argue over
components

E: Penetration

test

G1: Component A
is secure

Parameter

[o]

E: Penetration
test

Fig. 2. Pattern reduction

component into a supply chain, the GSN diagram (“Gl:
Component A is secure”) is automatically or manually checked
by the assurance carrying code system, and if it is acceptable,
the software component is integrated into the supply chain and
the GSN diagram is also merged into the GSN diagram of the
entire supply chain (“G: System is secure”) .

We have been developing a web-based GSN tool [9] which
can be used to remotely share and edit GSN diagrams using
a GSN database. We are currently in the process of designing
the framework (Fig. 1) using the tool.

III. A PATTERN LANGUAGE FOR GSN

To realize the assurance carrying code system, we propose
a new pattern language which has graphical and term nota-
tions. Unlike Denny and Pai [10], our pattern language is a
general purpose programming language based on A-calculus,
one of the basis of functional programming. Our language is
based on A-calculus and satisfies desirable properties such as
confluence, which implies that any sequence of computations
yields the same results if it terminates. Thus, the computation
in our pattern language can be fully automated, in contrast to
previous approaches [11]-[13] which require human guidance
to obtain the final GSN diagrams.

Fig. 2 shows our notation for a GSN pattern and its
reduction. The left-most diagram shows a pattern in which
an argument for the goal Gl is abstracted away. When we

provide an argument for the goal Gl, for example, on the
basis of a penetration test, the GSN pattern is instantiated into
the GSN diagram in the right, which provides a full argument
for the goal G (“System is secure”). In our framework, GSN
diagrams and patterns are defined as follows.

P:=alelg) | Slg,91,---,9n] | Aa.P | PLPs (D

Here, « is a parameter for an argument, e[g| is evidence for
a goal g, S[g,91,.-.,9n] is a strategy for deriving a goal
g from goals g1, ...,9n. Aa.P behaves as a function which
substitutes an argument () to a parameter « when it is applied
to another argument (). P, P is a pattern application, in which
an argument P, is applied to an argument P, . There is a single
reduction rule called S-reduction:

(M.P)Q = P[Q — o, ()

where P[()Q — «] is a pattern obtained by substituting () into
«. Then the reduction in Fig. 2 can be written using term
notations by:

(A\.S[G, G1]a)(E[G1)) = S[G, G1]E[G1]. 3)
IV. CONCLUDING REMARKS

We introduced assurance carrying code, a framework for
assuring the dependability of software supply chains. We
are formalizing GSN and its patterns using A calculus. Our
progress will be presented in the near future.

ACKNOWLEDGEMENT

The research was supported by ROIS NII Open Collabora-
tive Research 2021-(21S0802).

REFERENCES

[1] C. W. Johnson, “You outsource the service but not the risk: Supply chain
risk management for the cyber security of safety critical systems,” 2016.

[2] J. Boyens, C. Paulsen, R. Moorthy, N. Bartol, and S. A. Shankles, “Sup-
ply chain risk management practices for federal information systems and
organizations,” NIST Special Publication, vol. 800, no. 161, p. 32, 2015.

[3] JSOF, “Ripple 20, 19 Zero-Day Vulnerabilities Amplified by the Supply
Chain,” https://www.jsof-tech.com/disclosures/ripple20/, Accessed: July
25, 2021.

[4] U.S. Department of Homeland Security, “Emergency Directive 21-01,”
April 15, 2021.

[5] NIST CSRC, “NIST Releases Draft of NIST SP 800-161, Revision 1
for comment,” May 10, 2021.

[6] T. Kelly, “Arguing safety — a systematic approach to safety case
management,” Ph.D. dissertation, Department of Computer Science,
University of York, 1998.

[71 W. Howard, “The formulae-as-types notion of construction,” 7o H. B.
Curry : Essays on combinatory logic, lambda-calculus, and formalism,
pp. 476-490, 1990.

[8] G. C. Necula, “Proof-carrying code,” in Proc. ACM POPL’97. ACM
Press, 1997, pp. 106-119.

[9] Y. Matsuno, “D-Case Communicator: A web based GSN editor for
multiple stakeholders,” in SAFECOMP 2017 Workshops, ser. LNCS, vol.
10489. Springer, 2017, pp. 64-69.

[10] E. Denney and G. Pai, “A formal basis for safety case patterns,” in
SAFECOMP, 2013, pp. 21-32.

[11] T. Kelly and J. McDermid, “Safety case construction and reuse using

patterns,” in SAFECOMP, 1997, pp. 55-69.

R. Alexander, T. Kelly, Z. Kurd, and J. Mcdermid, “Safety Cases for

Advanced Control Software : Safety Case Patterns,” Tech. Rep., 2007.

[13] Y. Matsuno, “A Design and Implementation of an Assurance Case Lan-
guage,” Proceedings - 44th Annual IEEE/IFIP International Conference
on Dependable Systems and Networks, DSN 2014, pp. 630-641, 2014.

[12]

