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Abstract—A Cyber-Physical System (CPS) is a system which consists of software components and physical components. Traditional
system verification techniques such as model checking or theorem proving are difficult to apply to CPS because the physical
components have infinite number of states. To solve this problem, robustness guided falsification of CPS is introduced. Robustness
measures how robustly the given specification is satisfied. Robustness guided falsification tries to minimize the robustness by changing
inputs and parameters of the system. The input with a minimal robustness (counterexample) is a good candidate to violate the
specification. Existing methods use several optimization techniques to minimize robustness. However, those methods do not use
temporal structures in a system input and often require a large number of simulation runs to the minimize robustness. In this paper, we
explore state-of-the-art Deep Reinforcement Learning (DRL) techniques, i.e., Asynchronous Advantage Actor-Critic (A3C) and Double
Deep Q Network (DDQN), to reduce the number of simulation runs required to find such counterexamples. We theoretically show how
robustness guided falsification of a safety property is formatted as a reinforcement learning problem. Then, we experimentally compare
the effectiveness of our methods with three baseline methods, i.e., random sampling, cross entropy and simulated annealing, on three
well known CPS systems. We thoroughly analyse the experiment results and identify two factors of CPS which make DRL based
methods better than existing methods. The most important factor is the availability of the system internal dynamics to the reinforcement
learning algorithm. The other factor is the existence of learnable structure in the counterexample.

Index Terms—Robustness guided falsification, CPS, Reinforcement Learning
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1 INTRODUCTION

A Cyber-Physical Systems (CPS) is a system which consists of
software components and physical components. Many mod-
ern systems, such as automotive vehicles, railway systems
and automated factories are CPS. As more and more CPSs
are deployed to safety critical domains, detecting defects
in a CPS becomes more and more important. However,
traditional engineering focuses either on a software com-
ponent or a physical component, and cannot handle inter-
actions between software and physical components. Testing
methods have been explored to guarantee the correctness
of CPS models. However, it is hard for testing to achieve
a high coverage, and thus provide guarantee with high
confidence, due to the infinite state space involved. For
software systems, formal methods such as model checking
or theorem proving are often explored to thoroughly verify
the system. However, model checking is undecidable [1]
for majority of CPSs due to the infinite state space of
CPS models, while theorem proving is extremely expensive.
Therefore, robustness guided falsification [2], [3] methods
are introduced to detect defects in CPS efficiently.

In robustness guided falsification, Metric Temporal Logic
(MTL) [4] or Signal Temporal Logic (STL) [5] formulas are
usually used to specify properties which must be satisfied
by a CPS model. Robustness of an MTL formula, a numeric
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measure of how “robust” a property holds in the given
CPS model, is defined. The state space of the CPS model
is explored and system parameters which minimize the ro-
bustness value are identified as a good candidate for testing.
In this way, robustness guided falsification aids to generate
defect-leading system parameters (i.e., counterexamples),
which enable more efficient, yet automatic detection of
defects. Although the non-termination of robustness guided
falsification does not mean the absence of counterexamples,
it suggests the correctness of the CPS model to some extent.

There are existing approaches, which adopt various
kinds of stochastic global optimization algorithms, e.g., sim-
ulated annealing [1] and cross-entropy method [6], to mini-
mize the robustness value of a temporal logic formula. Many
CPS systems, such as automotive, air plane and electric grid,
are reactive. To test such CPS, we need to generate an input
sequence which potentially leads to a failure. In existing ap-
proaches of robustness guided falsification, the input gener-
ation problem are framed as parameter generation problem.
The input is divided into several control points and inputs at
those points are treated as system parameters. However, the
temporal relations between inputs and system responses are
lost. Moreover, control points which represent an input form
a high dimensional space, in which conducting optimization
is very difficult.

With the rapid development of deep learning research,
especially the capability that Deep Reinforcement Learning
(DRL) [7] showed in the Go and various other computer
games, the power of Reinforcement Learning has attracted
more and more attentions. Reinforcement learning trains
an agent from information learnt from reactions with the
environment. The learning process is guided with a reward
function, that maximizes a pre-defined global goal.
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Inspired by the successful application of DRL on reac-
tive, non-linear systems (such as games), in this work, we
propose to frame the falsification problem as a reinforce-
ment learning problem and explore the interactive learning
power of DRL to find counterexamples. We focus on the
CPS which is reactive, i.e., CPS which takes inputs from
the environment in real time. We adopt two state-of-the-
art Deep Reinforcement Learning (DRL) [8] techniques, i.e.,
Asynchronous Advanced Actor Critic (A3C) and Double Deep-Q
Network (DDQN) to solve the robustness guided falsification
problem on CPS.

We make the following contribution in this work:

• We propose to format the problem of falsifying CPS
models into a reinforcement learning problem.

• We implement our proposed method and conduct
experiments with three widely used CPS models.

• We compare our methods with state-of-the-art meth-
ods and provide thorough analysis on the results.

• We make our falsification tool and the three models
public available1.

The remaining of the paper is organized as follows. We
discuss related works and present preliminaries in section 2
and section 3, respectively. We then introduce the details of
our method and the evaluation methodology in section 4
and section 5. From section 6 to 8, we present the evaluation
results using 3 widely adopted CPS models. In section 9, we
provide a thorough analysis on the experiment results and
discuss the performance-affecting factors of our methods.
Finally, we conclude our approach and discuss potential
future works in section 10.

2 RELATED WORK

Formal verification of CPS Statistical model checking has
been actively employed to conduct verification on CPS [9],
[10], [11], [12]. Clarke et al. [11] propose to use statistical
model checking techniques to verify CPS, and cross entropy
is adopted to conduct rare event sampling. Zuliani et al. [12]
propose a Bayesian statistical model checking technique to
verify stochastic discrete-time hybrid systems. They show
that their technique enables faster verification on hybrid
systems through a case study. Grosu and Smolka [13] adopt
the Monte-Carlo techniques to guide random walks over the
state space of the system in model checking.

Model checking based approaches suffer from scala-
bility problems, especially for the infinite state space of
CPS. Therefore, it is hard for these kind of approaches to
be applied to large-scale systems. Therefore, testing based
approaches [14] gain popularity during the past decade.
Researchers have been exploring good strategies to guide
the test case selection process, and one of the most popular
directions is robustness guided flasification [15], [6].
Robustness guided falsification of CPS In robustness
guided falsification methods, quantitative semantics over
Metric Temporal Logic (MTL) [4] and its variant, Signal
Temporal Logic (STL) [16], [17], are employed. Robustness
of an MTL formula, which is a numeric measurement of
how “robust” a property holds in the given CPS model, is

1. https://github.com/yoriyuki-aist/Falsify/

defined. Then the fault detection problem is formulated into
the numerical minimization problem and system parame-
ters which minimize the robustness value are identified as a
good candidate for testing.

We can classify robustness guided methods into black-
box approaches and grey-box approaches. Black-box approaches
can further be classified into methods which convert the
robustness falsification problem into a global optimiza-
tion problem and the methods based on statistical mod-
elling. The methods used a global optimization techniques
include methods adopting simulated annealing [15], [2],
[18], [19], methods adopting genetic algorithms [20], Tabu
search [21], gradient decent [22] and Nelder-Mead [23].
The methods based on statistical modeling include cross-
entropy method [6] and Gaussian regression [24], [25], [26],
[27]. Cross Entropy (CE) [6] method samples a probability
distribution (of input) which approximate the distribution
induced by the robustness values of trajectories. The ap-
proaches which employ Gaussian regression cast the falsifi-
cation process into the domain estimation problem, and then
adopt the Gaussian Process to construct approximate prob-
abilistic semantics of the temporal formulas to give high
probabilities to regions where the formulas are falsified.

However, Gray-box approaches are most related to our
work. Plaku et al. [28] propose an RRT-based approach,
which incrementally generates the next action step by step
by sampling the valid inputs. Dressosi et al. [29] propose a
method in which RRT-search is guided by robustness. Con-
stant interpolation is adopted to predict the final robustness.
Our previous approach [30] adopts Deep Reinforcement
Learning (DRL) techniques to solve the falsification prob-
lem. Our motivation is to explore more information, such
as the temporal structure of the input and/or the output
of the system, to guide the falsification. Unlike Dressosi et
al., DRL integrates the guided search process by prediction
of robustness, which is learnt from the past behaviours of
the system. In this work, we provide a thorough extension,
both in the theory part and the evaluation part to our
previous work [30]. We also provide analysis and report our
observations.
Controller Synthesis There are also approaches employing
Reinforcement Learning (RL) to satisfy MTL properties in
the field of controller synthesis. One of the challenges in
this task is how to design the rewards in RL from the given
formula. One strategy is exploring automata-based reward
shaping [31], [32], [33]. These approaches convert the MTL
formula into the corresponding automaton, and decide the
reward based on the current state of the automaton. Another
kind of approaches use the robustness of MTL [34], [35],
[36]. Controller synthesis is a problem which tries to keep
the system in safe states, while falsification is a problem
which tries to find the critical errors in the system, and the
different purposes lead to different reward functions.

3 PRELIMINARY

3.1 Discrete time deterministic input-output systems
In this work, we focus on systems which consume inputs
and deterministically produce outputs in real time. We
assume that inputs and outputs occur at discrete time in-
stances. Continuous time systems can be adapted to discrete
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time systems through sampling. We use x = x1, . . . ,xn, . . .
to denote a finite (resp. infinite) sequence of inputs, y =
y1, . . . ,yn, . . . to denote a finite (resp. infinite) sequence of
outputs, and t = t1, . . . , tn, . . . to denote a finite (resp. infi-
nite) sequence of time instances at which inputs and outputs
occur. We assume that inputs belong to a metric spaceX and
that outputs belong to a metric space Y . A metric space is a
set of points, in which the distance between two points that
follows several axioms (e.g., triangle inequality) is defined.
In this work, we focus on finite dimensional Euclid spaces
with ordinary Euclidean distance.

Let X∗ be the set of finite sequences of elements of X .
The system f : X∗ → Y is a function from a finite sequence
x = x1, . . . ,xn ∈ X∗ to an output yn+1 ∈ Y . If n = 0, f re-
turns the initial state y1 of the system. For simplification, we
abuse notations and denote f(x1, . . . ,xn) = y1, . . . ,yn+1,
given that f(x1, . . . ,xi) = yi+1 for i = 0, . . . , n. Further, we
apply f to an infinite sequence of inputs x1, . . . ,xn, . . . and
obtain the infinite sequence of outputs y1, . . . ,yn, . . ., given
that f(x1, . . . ,xi) = yi+1 for i = 0, 1, . . ..

3.2 Metric temporal logic

To describe the property of the system f , we employ a
variant of Metric tempral logic (MTL) defined in [4]. The
syntax is defined in the equation (1),

ϕ ::= p | ¬ϕ | ϕ1 ∨ ϕ2 | ϕ1 ∧ ϕ2 | ϕ1 UI ϕ2 | ϕ1 SI ϕ2 (1)

p is either True, False or any closed set of a metric space. I
is an interval over non-negative real numbers. If I is [0,∞),
I is omitted. Intuitively, ϕ1 UI ϕ2 holds if ϕ2 will become
true at a time instance t ∈ I after the current time and until
then, ϕ1 holds. Similarly, ϕ1 SI ϕ2 holds if ϕ2 was true at
a time instance t ∈ I before the current time and after that
time, ϕ1 holds. We also use other common abbreviations,
e.g., �Iϕ ≡ ¬(TrueUI ¬ϕ), which means ϕ continues to
hold for any time t ∈ I units after the current time and
�Iϕ ≡ ¬(TrueSI ¬ϕ), which means ϕ holds at any time
t ∈ I units before the current time.

Definition 3.1. Let φ be a MTL-formula. n represents the
number of time slots of which time is tn. Let t =
t0, t1, . . . , tn, . . . be an infinite sequence of sampling
time of the system states. Let y = y0,y1, . . . ,yn, . . .
be system states of time instants tn respectively. The
relation y, n |= φ (read that φ holds at n on the trace
y) is defined recursively on φ as follows.

y, n |= p ⇐⇒ yn ∈ p (2)
y, n |= φ1 ∧ φ2 ⇐⇒ y, n |= φ1 and y, n |= φ2 (3)
y, n |= φ1 ∨ φ2 ⇐⇒ y, n |= φ1 or y, n |= φ2 (4)

y, n |= ¬φ ⇐⇒ ¬(y, n |= φ) (5)

y, n |= φ UIψ ⇐⇒ ∃n′
(
tn′ − tn ∈ I,y, n′ |= ψ and
n ≤ ∀n′′ < n′,y, n′′ |= φ

)
(6)

y, n |= φ SIψ ⇐⇒ ∃n′
(
tn − tn′ ∈ I,y, n′ |= ψ and
n′ < ∀n′′ ≤ n,y, n′′ |= φ

)
(7)

We adopt the notion of future-reach fr(ϕ), which is the
maximal time in future which is required to determine the
truth value of formula ϕ, following [37].
Definition 3.2 (Future reach). For each MTL-formula, we

define the future reach fr(φ) as follows.

fr(p) = 0 (8)
fr(φ ∧ ψ) = fr(φ ∨ ψ) = max(fr(φ), fr(ψ)) (9)

fr(¬φ) = fr(φ) (10)
fr(φ UIψ) = max(fr(φ) + sup I, fr(ψ) + sup I) (11)
fr(φ SIψ) = max(fr(φ), fr(ψ)) (12)

If fr(φ) = 0, φ is called pure past dependendt [38]. For
example, fr(p) = 0, fr(�[0,3]p) = 3, fr(�[0,3]p) = 0 and
fr(�[0,t1]p→ �[t1,t2]p) = t2.

3.3 Robustness

Section 3.2 defines the relation |=, which determines
whether an MTL-formula holds or not for the given system
output at the given time. In this section, we define robustness
degree, which is a numerical measure of how robustly the
MTL-formula holds for the given system output at the given
time.

First, we define the distance Dist(x,D) between a point x
in a metric space X and its closed subset D.

Dist(x,D) =

{
inf{dist(x, z) | z ∈ X\D} if x ∈ D
− inf{dist(x, z) | z ∈ D} if x 6∈ D,

(13)

where dist(x, z) is the Euclidean distance between x and y.
For a given formula ϕ, an output signal y and time t,

we adopt the notation of work [39] and define the robustness
degree JϕK(y, t) of output signal y against ϕ at time t.
Definition 3.3 (Robustness). Let φ be an MTL-formula. The

robustness function JφK(y, n) over infinite traces y =
y0,y1, . . . ,yn, . . . is defined as follows.

JpK(y, n) = Dist(yn, p) (14)
Jφ1 ∧ φ2K(y, n) = min(Jφ1K(y, n), Jφ2K(y, n)) (15)

J¬φK(y, n) = −JφK(y, n) (16)
Jφ1 ∨ φ2K(y, n) = max(Jφ1K(y, n), Jφ2K(y, n)) (17)

Jφ UIψK(y, n) = max
n′,tn′−tn∈I

min


JψK(y, n′),

n′−1
min
n′′=n

JφK(y, n′′)


(18)

Jφ SIψK(y, n) = max
n′,tn−t′n∈I

min


JψK(y, n′),
n

min
n′′=n′+1

JφK(y, n′′))


(19)
(20)

For the empty set ∅, min ∅ =∞ and max ∅ = −∞.

We can show that JφK(y, n) > 0 if and only if y, n |=
φ. For derived operators � and �, we have the following
equations.

J�IφK(y, n) = min{JφK(y, n′) | tn′ − tn ∈ I} (21)
J�IφK(y, n) = min{JφK(y, n′) | tn − tn′ ∈ I} (22)
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If the robustness of JφK(y, n) becomes negative, y fal-
sifies the property φ. Therefore, robustness guided falsifi-
cation aims at finding a falsifying y through minimizing
JφK(y, n).

3.4 Reinforcement Learning
Reinforcement learning is a machine learning technique in
which an agent learns the structure of the environment
based on observations, and maximizes the rewards by acting
according to the learnt knowledge. The standard setting
of a reinforcement learning problem consists of an agent
and an environment. The agent observes the current state
and reward from the environment, and returns the next
action to the environment. Reinforcement learning is often
formulated as a Markov decision process (MDP) [40]. A MDP is
a tripleM = (X ,A,P0). X is a set of states, A is a set of ac-
tions and P0 is the transition probability kernel. A transition
probability kernel P0 assigns a probability distribution over
X × R, which is a distribution over the next states and the
reward, to each state-action pair (x, a) ∈ X ×A. Intuitively,
P0 specifies the probability density of (x′, r) ∈ X × R
where x′ is the next state and r is the reward which the
agent obtains if it takes action a in system state x. The
goal of reinforcement learning is for each step n, given the
sequence of previous states x0, . . . , xn−1, rewards r1, . . . , rn
and actions a0, . . . , an−1, generating an action an, which
maximizes expected value of the sum of rewards:

r =
∞∑
i=n

γiri+1, (23)

where 0 < γ ≤ 1 is a discount factor.
There are different kinds of reinforcement learning algo-

rithms proposed in the literature. These approaches mainly
falls into 2 different categories, i.e., value based and policy
based. Deep reinforcement learning explores deep neural
networks to represent a Q-function and/or a policy π.

Q-learning [41], [42] is the representative method for
value-based reinforcement learning algorithm. For each
action-state pair (x, a), let optimal action-value function
Q∗(x, a) be the highest achievable expected value of r when
x0 = x and a0 = a. Once the value of Q∗ is known, the opti-
mal strategy is to choose action a which maximizes Q∗(x, a)
for the current state x (following the greedy policy). One
approach of reinforcement learning is to directly estimate
Q∗ and use this estimated value to determine best actions.

Deep Q Network (DQN) [43] is the first method intro-
ducing deep learning to reinforcement learning successfully.
DQN uses a deep neural network to approximate opti-
mal action-value function Q∗(x, a) in Q-learning. Double
DQN (DDQN) [44] is an improvement of DQN, it has
two networks which conduct action selection and Q-value
evaluation separately. DDQN learns faster and can avoid
the over-estimation problem of DQN. Originally, DQN and
DDQN can only output discrete actions. Later, a new repre-
sentation of Q-function called NAF [44] is proposed, which
makes learning Q-function for a continuous action domain
possible.

Actor-critic [41], [42] is the representative method for
policy based approaches. A stochastic stationary policy (or
just policy) π maps states in X to probability distributions

over actions in A . Each policy π gives rise to a Markov
reward process (MRP) M = (X ,P0). In a MRP, the state
makes transitions as a Markovian process and generates
a sequence of rewards r1, r2, . . .. The action-value function
Qπ is defined by

Qπ(x, a) = E

[ ∞∑
t=0

γtRt+1

∣∣∣∣∣x0 = x, a0 = a

]
(24)

where E signifies the expected value. An actor-critic method
works as follows. First, it starts with a random policy π0 and
the “actor” follows π0 for some duration of time. Then, the
“critic” estimates Qπ0 based on the results of the run. The
greedy policy π1 determined by estimated Qπ0 is generated
and the actor follows π1 in the next phase. The actor-critic
method repeats this process.

Asynchronous Advantage Actor-Critic (A3C) [45] uti-
lizes multiple processes to accelerate the training process.
All processes run the same training algorithm and the
information is collected by a central process. In this way,
the algorithm can train models much faster.

In this work, we particularly adopted two state-of-the-art
deep reinforcement learning algorithms, i.e., Asynchronous
Advantage Actor-Critic (A3C) [45] and Double Deep Q Network
(DDQN) [44].

4 OUR APPROACH

4.1 Target properties
Our method focuses on safety properties of CPS, in particu-
lar, finite future reach safety properties.
Definition 4.1 (Finite future reach safety properties). If the

MTL formula ψ has a form ψ ≡ �ϕ, in which fr(ϕ) <∞,
we call ψ a finite future reach safety property. If fr(ϕ) = 0,
we call ψ a pure past dependent safety property.

Safety property is an important class of temporal prop-
erty [38]. The future reach of properties that we focus on are
often finite, mainly because we are usually interested in the
system reactions in a finite period of time. Note that if the
formula is past dependent, the robustness of it at a certain
time is determined only by the trace until that time.
Lemma 4.1 (Robustness of a pure past dependent formula).

Let y be a finite trace of system states y0, . . . ,yn. Let
y(1) and y(2) be two infinite extensions of y. If φ is pure
past dependent,

JφK(y(1), n′) = JφK(y(2), n′) (25)

for all 0 ≤ n′ ≤ n.

We define the robustness JφK(y, n′) of the finite trace y as
JφK(y, n′) where y is an infinite extension of y.

In general, we are interested in finite future reach safety
properties, which cannot be represented by pure past de-
pendent formula. Therefore, we approximate a finite future
reach safety property using monitoring formula.
Definition 4.2 (monitoring formula). Let ψ = �ϕ0 be a finite

future reach safety property. The monitoring formula ϕ for
ψ is defined by �[fr(ϕ0),fr(ϕ0)]ϕ0.

Because

y, n |= �[fr(ϕ0),fr(ϕ0)]ϕ0 ⇐⇒ y, n− fr(ϕ0) |= ϕ0 (26)
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Algorithm 1 Falsification for ψ by reinforcement learning
input: A finite future reach safety property ψ, its monitoring formula ϕ, a system

f and an agent a
output: A counterexample input signal x if exists
parameters: The end time L, the maximum number of the episode N
1: for numEpisode← 1 to N do
2: i ← 0, y0 be the initial (output) state of f and r ← reward(y, ϕ, 0),

y ← append(y,y0)
3: x,y be the empty input/output signal sequence
4: while i < L do
5: xi ← a.step(yi, r), a.update(), x← append(x,xi) . choose the

next input by the agent
6: yi+1 ← f(x), y ← append(y,yi+1) . simulate, observe the new

output state
7: r ← reward(y, ϕ, i+ 1) . calculate reward based on Definition (4.3)
8: i← i+ 1
9: end while

10: if y 6|= ψ then return x as a falsifying input
11: end if
12: a.reset(yL, r)
13: end for

The monitoring formula indicates whether ϕ0 holds or not
fr(ϕ0) time-unit before. Note we assume that if n− fr(ϕ0) <
0, then y, n−fr(ϕ0) |= ϕ0 does not hold. The monitoring for-
mula is a pure past dependent formula, therefore Lemma 4.1
holds. Our method requires ϕ0 to be pure past-dependent.
Therefore, we use robustness of the monitoring formula
(estimating the robustness of ϕ0) to falsify �ϕ0. If the time
interval is between −∞ and∞, � �[fr(ϕ0),fr(ϕ0)] ϕ0 holds if
and only if �ϕ0 holds. Therefore, we can use the monitoring
formula to convert a finite future reach safety property to
a pure past dependent safety property. In the setting of
our paper, the time interval is cut at 0 and some finite
T . Therefore, � �[fr(ϕ0),fr(ϕ0)] ϕ0 is not equivalent to �ϕ0.
However, we use the monitoring formula to approximate
the original formula, and the experiment shows that this
approximation still leads to reasonably good results.

4.2 Overview of our algorithm
Let us consider the falsification problem which finds a
counterexample that falsifies the finite future reach safety
property ψ. Let ϕ be the monitoring formula for ψ. Our
mission is to generate an input signal x for system f , such
that the corresponding output signal f(x) does not satisfy ψ.
We assume that a discretization of time is given (common
for industry systems) and x,y are discrete signals.

Our algorithm of falsifying a finite future reach safety
property is shown in Algorithm 1. Our approach adopts
deep reinforcement learning, which uses deep neural net-
works. Deep Neural network is known to be a universal
function approximator for non-linear functions, and has
shown impressive performance on tasks of non-linear sys-
tems. Therefore, Deep RL is suitable for non-linear sys-
tems [42]. In our algorithm, we fix the simulation time to
be L and call one simulation until time L an episode in con-
formance with the reinforcement learning terminology. The
agent a generates the input signal sequence x = x1, . . . ,xL
by repeating the following steps:

1) At time i (i = 0, 1, . . . , L), the agent a chooses
the next input value xi. The generated input signal
is extended to x ← append(x,xi) (line 5). The
method call a.step(yi, r) represents that the agent
a takes the current state and reward pair (yi, r) and
simultaneously returns the next action xi (the input

signal in the next step). Then the agent updates
policy weights and append the newly generated
action into the action sequence.

2) Our method obtains the corresponding output sig-
nal yi+1 = f(x) by stepping forward one simulation
on the model f from time i to i+ 1 on input xi (line
6).

3) Let yi+1 be the new state (i.e., output) of the system.
We compute reward r by reward(y, ϕ, i+ 1) (line 7).
Function reward(y, ψ, i + 1) calculates the reward
based on Definition 4.3 and the details are discussed
in Section 4.3.

At the end of each episode, we obtain the output signal
trajectory y and check whether it satisfies the property ψ
or not. If it is falsified, our algorithm returns the current
input signal x as a counterexample (line 10). Otherwise,
we discard the current generated signal input but retain
the memory in the agent (line 12) and restart the episode
from the beginning. The method call a.reset(yi, r) notifies
the agent that the current episode is completed with the
state yi and the reward r.

4.3 Reward definition for finite future reach safety
property falsification
For a given future reach safety property ψ and a system
f , our goal is to find an input signal x = x0, . . . ,xL−1
which minimizes the robustness JψK(f(x), 0). For simplicity
we assume that ϕ is pure past dependent.

At each time step i = 0, . . . , L, we choose xi in a greedy
way. Let us assume that x0 . . . ,xi−1 are already determined.
Then we choose the next input xi as follows.

xi = arg min
xi

min
xi+1,...,xL−1

J�ϕK(f(x), 0) (27)

= arg min
xi

min
xi+1,...,xL−1

L
min
j=0

JϕK(f(x0, . . . ,xj−1), j) (28)

∼ arg min
xi

min
xi+1,...,xL−1

− log
L∑
j=0

e−JϕK(f(x0,...,xj−1),j)

(29)

= arg max
xi

max
xi+1,...,xL−1

L∑
j=0

e−JϕK(f(x0,...,xj−1),j) (30)

= arg max
xi

max
xi+1,...,xL−1

L∑
j=i+1

e−JϕK(f(x0,...,xj−1),j) (31)

Let rj = e−JϕK(f(x0,...,xj−1),j). Then, (31) can be written

= arg max
xi

max
xi+1,...,xL−1

L∑
j=i+1

rj . (32)

Recall that ϕ is past dependent, therefore, JϕK(f(x), j) =
JϕK(f(x0, . . . ,xj−1), j) for all j. Therefore, we have the
derivation from (27) to (28). (29) uses a widely adopted ap-
proximation of maximum by the log-sum-exp function [46],
[47].

max(x1, . . . , xn) ∼ log(ex1 + . . .+ exn) (33)

The approximation by log-sum-exp has a more general form

max(x1, . . . , xn) ∼ 1

α
log(eαx1 + . . .+ eαxn). (34)
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Falsifier
A3C, DDQN (ChainerRL) 

System Input

System Model
Simulink Subsystem

Robustness Monitor
Taliro-Monitor

System Output

Robustness

Fig. 1: Architecture of our system

We empirically explore the impact of α to the performance
of our approach in Section 9.1. The derivation from (29) to
(30) uses monotonicity of log function. Since x0, . . . ,xj−1
are determined in previous steps,

∑i
j=0 e

−JϕK(f(x0,...,xj−1),j)

is regarded as a constant. Therefore, we only maximize∑L
j=i+1 e

−JϕK(f(x0,...,xj−1),j). This yields (31).
By comparing (23) with (32), we find that (32) defines

exactly the reward of a reinforcement learning problem with
γ = 1. The argument above motivates the following reward
definition.
Definition 4.3 (reward). Let ψ be a finite future reach safety

formula and ϕ the monitoring formula for ψ. and y be a
finite sequence of signals. We define reward(ϕ,y, i) as

reward(ϕ,y, i) = exp(−JϕK(y, i))− 1 (35)

1 is subtracted from exp(−JϕK(y, i)) for scaling pur-
poses.

Note that the deep reinforcement learning models we
adopted, i.e., A3C and DDQN, follows the Markov assump-
tion. We define the reward function based on past depen-
dent formula to approximate the Markov assumption. Our
evaluation results show that our approximation achieves
good performance.

5 EVALUATION METHODOLOGY

In this section, we first discuss the implementation of our
approach, then we describe our experiment design and
analysis methodology of the experiment results.

5.1 Implementation
The overall architecture of our system is shown in Fig. 1.
We implement our system2 in Matlab/Simulink. The entire
system is driven by a Matlab function falsify which starts
a Simulink module consisting three components, i.e., the
Falsifier, the System Model and the Robustness Monitor.
Falsifier and Robustness Monitor are Simulink blocks and
System Model is a Simulink subsystem which implements
the system under falsification. The simulation is conducted
with the Matlab/Simulink models. The robustness moni-
tor, which is implemented using the TaliRo monitor of
S-Taliro [48], computes the robustness of the monitoring
formula. The falsifier computes the reward from the ro-
bustness and call the reinforcement learning component,
which implements A3C and DDQN using a Python library
called ChainerRL [49] (version 0.3.0). Finally, the generated

2. The source code and models are available on https://github.com/
yoriyuki-aist/Falsify/.

inputs and outputs by the Simulink module are sent back
to a Matlab function falsify which calculate the (overall)
robustness of the target formula using the dp-taliro
component of S-Taliro. If the robustness is negative, falsifi-
cation succeeds. Otherwise, falsify notifies the end of an
episode to the reinforcement learning component and starts
another episode.

The A3C is implemented by Gaussian policies with diag-
onal covariance using the Long Short Term Memory (LSTM)
model. The network structure and most of the parameters
are the same to the default model settings except t_max and
γ. t_max is the time duration that the policy is updated.
In our problem, the agent must find the falsifying input
quickly. Therefore, we reduce t_max from the default 10
to 5. We also set γ = 1 according to our reward definition
(refer to Section 4.3). Our version of DDQN is implemented
by a fully connected neural network for Q-function using
quadratic action value. We adopt the default parameter
settings. We also define RAND, a random agent which
outputs uniform random outputs regardless of the input
the agent receives RAND is used as a baseline method to
measure the impact of different falsifying methods.

We do not do parameter tuning for two reasons. Firstly,
it is difficult to tune and obtain “optimal” parameters in
practice, since parameter tuning requires a large number
of experiment runs. Secondly, and more importantly, we
want to make our approach generally applicable and avoid
over-fitting to some particular system. Even if we find
that a model is falsified faster with fine-tuned parameters,
these parameters may not work for other models. Therefore,
our evaluation aims to find whether reinforcement learning
works well or not without fine tuning of parameters. How-
ever, we also observe that some poor performance instances
of reinforcement leaning might be caused by the choice of
parameters.

Our experiment is conducted on Ubuntu 16.04 with 18
core 2.3GHz Intel Xeon W processor and 128G byte RAM
for ϕ1, . . . , ϕ4 of the CARS model in Section 6, and iMac
Pro using 10 core 3.0GHz Intel Xeon W processor, and 128G
byte RAM for other models.

5.2 Experiment design

We evaluate our proposed method as well as the baseline
methods (which will be discussed in section 5.2.1) with
3 models. The results of the evaluations are shown from
section 6 to section 8, respectively.

5.2.1 Baseline methods

The baseline methods we use for comparison are uniform
random sampling (RAND), Cross Entropy (CE) [6] and
Simulated Annealing (SA) [50]. RAND conducts uniform
random sampling and is used as a baseline method for
comparison. The cross entropy method is a representative
method to learn the distributions which have good chance
of falsifying the models. Simulated annealing is a represen-
tative method using genetic optimization techniques. Both
methods are state-of-the-art methods for robustness-guided
falsification of CPS systems.
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5.2.2 Measurements
We use the number of simulations required to falsify the
property as a measurement to evaluate the performance
of each method. The reasons are two folds. Firstly, the
simulation process dominates the execution time among all
steps of our method, therefore the number of simulations is
good indication of the execution time. Secondly, considering
that the execution time is affected by implementation de-
tails (e.g., programming language) as well as the execution
environment, it is not a good performance measurement
since different approaches are implemented in different
environment and programming languages. To substantiate
these two claims, we conduct an analysis of execution time
in Section 9.2.

5.2.3 Analysis methods
Since all methods involve randomness, the results are highly
non-deterministic. Therefore, we use statistical methods to
compare the performance of methods we consider.

First, we present the summary statistics of the number
of simulations required to falsify each property. We present
two statistics, i.e., the rate in which the properties are suc-
cessfully falsified by 200 episodes (we set 200 as the upper
bound of episodes in our experiment), and the median of the
number of episodes required when falsification succeeds.
The reason of using median instead of average number, is
that the distribution of the number of episodes required for
falsification is highly non-normal, and thus average is not
meaningful.

The summary statistics may not be enough since they
may not reflect the differences of distributions. Statistical
testing is required to provide confidence on the existence of
differences between two methods. We choose ordinal methods
for statistical testing, in particular, testing relative effect size
measures between methods of interest to validate our claims.
The relative effect size measure [51] between two random
values X,Y is defined as

p = P (X < Y ) +
1

2
P (X = Y ). (36)

If p < 0.5, X is likely larger than Y and vice verso. p has
close relationship to Cliff’s d [52]

d = P (X < Y )− P (X > Y ) (37)

Both p and d are ordinal statistics solely determined by the
relative order of data points. Cliff argues the advantages
of ordinal statistics over traditional statistics using means
or other summary values, which apply to our approach.
First, our question can be directly formulated with the order
between data. We want to know how often a method A
outperforms a method B. This question is stated by refer-
ring the order between data points of A and B. Comparing
means or medians of A and B only answers this question
indirectly and under strong assumptions. Second, results
of statistical testing using ordinal statistics is valid under
weaker assumptions of the distribution of data than clas-
sical methods. Data from our experiments have unknown
distribution and thus testing ordinal statistics are more
favourable. In our case, the null hypothesis is p = 0.5 and
there is no assumption on the distributions of data points
being test [52].

y_in y_out

Car 2

Throttle

Brake
y_out

Car 1

y_in y_out

Car 3

y_in y_out

Car 4

y_in y_out

Car 5

1

2

3

4

1

2

5

(a) The CARS model

Run
during:
v_dot = -Throttle - Brake * v;
y_dot = v;
y_out = y;

(b) Statechart of
car 1

Braking
during:
v_dot = -v;
y_dot = -v;
y_out = y;

Keeping 
during:
y_dot = v;
y_out = y;

Chasing
during:
v_dot = 1;
y_dot = -v;
y_out = y;

[y - y_in >= 20]

[y - y_in >=15]
1

[y - y_in <= 10]

[y - y_in <=5]
2

(c) Statechart of car 2 to car 5

Fig. 2: The CARS model

If we set the significance level to 0.05 for each testing, we
obtain spurious results much higher probability than 0.05 in
overall experiments, since the statistical testing is repeated
multiple times. The easiest remedy of this situation is setting
the significance level to be 0.05/N (known as Bonferroni
correction), where N is the number of testing. However,
Bonferroni correction is too conservative if the results of
testing have correlations. Konietschke et al. [51] propose a
method to test multiple hypothesis simultaneously for p and
develop nparcomp package 3 in R. We set the significance
level to 0.05 for each simulation models, i.e., CARS, AT and
PTC models. For each formula, we apply Bonferroni correc-
tion and set the significance level to be 0.05/N , where N is
the number of formulas. We perform multiple comparisons
between RAND and all the other methods, and comparisons
between baseline methods and RL based methods using
nparcomp.

6 EVALUATION USING CARS MODEL

6.1 Model description

The CARS model contains five cars, as shown in Fig. 2a.
The first, leading car drives by Throttle and Brake which are
supplied as the system inputs (shown in Fig. 2b). The other
cars drive autonomously according to the state-chart shown
in Fig. 2c, which is derived from the work by Hu et al. [53].

To make CARS model discrete, we choose a sampling
interval ∆T and discretize time into discrete intervals. Then,
the inputs are represented by a sequence x of xi which is a
vector of Throttle and Brake values. Each xi corresponds
to the inputs of time instance i∆T . Similarly, the outputs

3. https://cran.r-project.org/web/packages/nparcomp/index.html
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TABLE 1: The properties for the CARS model.

id Formula
ϕ1 �y5 − y4 ≤ 40.0
ϕ2 �[0,70] �[0,30] y5 − y4 ≥ 15
ϕ2 �[0,80]((�[0,20]y2 − y1 ≤ 20) ∨ (�[0,20]y5 − y4 ≥ 40))
ϕ4 �[0,65] �[0,30] �[0,5]y5 − y4 ≥ 8
ϕ5 �[0,72] �[0,8] (�[0,5]y2 − y1 ≥ 9→ �[5,20]y5 − y4 ≥ 9)

TABLE 2: Success rate of falsifying the CARS model

Properties A3C
-WB

DDQN
-WB

A3C
-BB

DDQN
-BB

RAND CE SA

ϕ1 100 100 0 0 0 100 30
ϕ2 100 100 100 100 100 34 11
ϕ3 100 73 0 0 0 99 41
ϕ4 24 36 0 0 0 0 0
ϕ5 99 100 0 0 0 100 9

are represented by a sequence y of yi, which is a vector of
y1, . . . , y5 in this example.

6.2 Properties

We falsify properties listed in Table 1. All properties are
safety properties and are designed to have increasing com-
plexities. The outermost � of ϕ2–ϕ5 has restricted time
interval, but this is to exclude the influence of the endpoint.
We choose properties in which the formulas inside the
outermost � is taken from the each hierarchy of properties
proposed in Fig. 4, Chapter 2. of Clarke et al. [38]. The goal
is to investigate the impact of each hierarchy of complexity
of formulas to the performance. In ϕ1, we use just an
atomic predicate, thus the entire formula forms an invariant
property. In ϕ2, the inside of the outermost � is a guarantee,
thus the entire formula forms a recurrence. In ϕ3, the inside
of the outermost � is an obligation. In ϕ4, the inside of
the outermost � is a persistence. In ϕ5, the inside of the
outermost � is a reactivity. The parameters are selected to
make falsification possible yet challenging.

6.3 Experiment settings

For each given property, we test A3C, DDQN and baselines
RAND, CE and SA. In particular, A3C and DDQN are tested
on both white-box (which observes all locations y1, . . . , y5
of the cars) and black-box (which can observe the robust-
ness but cannot observe locations of cars at all) settings.
The purpose of having two settings for the reinforcement
learning algorithms is to measure the impact that system
internal dynamics information has on the performance of
RL algorithms. We consider CE and SA black-box methods
since they only use robustness value and does not use the
states y1, . . . , yn for optimization. For each combination of
the given property and method, we run the falsification
procedure 100 times. For each falsification procedure, we
execute simulation episodes up to 200 times and measure
the number of simulation episodes required to falsify the
property. If the property cannot be falsified within 200
episodes, the procedure fails. We set ∆T = 5. Since the
∆T is much larger than the time step of simulation, we
have to interpolate the inputs to the system. We use linear
interpolation since RL generates the inputs to the system
on the fly. Spline interpolation, which is the default method

TABLE 3: Median number of episodes when falsification of
CARS succeeds

Properties A3C
-WB

DDQN
-WB

A3C
-BB

DDQN
-BB

RAND CE SA

ϕ1 3 3 – – – 29 128.5
ϕ2 4 5 1 1 1 7 19
ϕ3 5 50 – – – 25 127
ϕ4 94.5 108.5 – – – – –
ϕ5 8 5 – – – 22 69
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Fig. 3: number of episodes to falsify CARS model

provided by S-Taliro, is difficult to apply in such situations.
To make the comparison fair, we also use linear interpola-
tion for RAND and S-Taliro based methods.

6.4 Evaluation results
Table 2 shows the success rates of falsification within 200
simulations for each formula and method. The method A3C-
WB/DDQN-WB indicates reinforcement learning meth-
ods A3C/DDQN in white-box settings. The method A3C-
BB/DDQN-BB indicates reinforcement learning methods
A3C/DDQN in black-box settings. Table 3 shows the me-
dian number (of episodes) required to falsify the model
for each formula and method. If all falsification attempts
fail, we mark the median umber of episodes as “-”. Fig. 3
shows the distributions of number of episodes required to
falsify the model for each formula and method in a box plot.
We can observe that white-box A3C shows the most stable
performance.

Table 4 and Table 5 show the relative effect size measure
on the number of episodes. The number less than 0.5 means
the probability of outcomes from the method presented in
the row, is less likely to be smaller than outcome from
the method presented in the column. The number in bold
is smaller than 0.5 in the statistically significant manner.
The number in italic is larger than 0.5 in the statistically
significant manner.

From Table 4, we can observe that all black-box rein-
forcement learning methods, A3C-BB and DDQN-BB, has
no differences to random inputs. Further, we can observe
that except ϕ2, white box RL methods outperform RAND
with large margin. Note that, for ϕ2, CE and SA also
underperform RAND.
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TABLE 4: Relative effect size measure comparing to random
inputs on CARS model

Properties A3C
-WB

DDQN
-WB

A3C
-BB

DDQN
-BB

CE SA

ϕ1 0.001 0.001 0.500 0.500 0.001 0.350
ϕ2 0.920 0.920 0.500 0.500 0.999 0.999
ϕ3 0.001 0.135 0.500 0.500 0.005 0.295
ϕ4 0.380 0.320 0.500 0.500 0.500 0.500
ϕ5 0.005 0.001 0.500 0.500 0.001 0.455

TABLE 5: Relative effect size measure comparing to S-Taliro
on CARS model

expName A3C-WB DDQN-WB A3C-BB DDQN-BB

ϕ1
CE 0.081 0.052 0.999 0.999
SA 0.001 0.001 0.650 0.650

ϕ2
CE 0.112 0.147 0.001 0.001
SA 0.004 0.011 0.001 0.001

ϕ3
CE 0.132 0.778 0.995 0.995
SA 0.015 0.280 0.705 0.705

ϕ4
CE 0.380 0.320 0.500 0.500
SA 0.380 0.320 0.500 0.500

ϕ5
CE 0.330 0.237 0.999 0.999
SA 0.009 0.002 0.545 0.545

From Table 5, we can observe that white box RL methods
almost always outperform CE and SA. Only exception is
ϕ2, in which white box DDQN underperforms CE. One
potential reason for RL to perform poorly on formula ϕ2

is that, ϕ2 is relatively easy for random sampling to find
a counterexample. RL methods may need multiple simula-
tions as well as “useful data” to learn such a rule.

7 EVALUATION USING AT MODEL

7.1 Model description
We use a model of an automatic transmission controller
(AT model), offered by Mathworks as a Matlab/Simulink
example, as one of the benchmarks. AT model is a model of
an automotive driving train. Fig. 4 shows the architecture
of the AT model. The model takes, throttle and brake
information as input, and outputs three values, i.e., Engine
RPM, Gear and Vehicle Speed. All values except Gear are
real values greater than or equal to 0. Gear takes four
discrete values g1, g2, g3, g4 as input. The model consists
of four components, i.e., Engine, Transmission, Vehicle and
ShiftLogic. The first three components model the continuous
dynamics of physical bodies, and thus are described by
ordinary differential equations. ShiftLogic implements the
logic of automatic transmission by a finite state automaton.
Therefore, AT is a mixture of continuous and digital sys-
tems, which is a typical CPS. The detailed description as
well as an implementation of the AT model are available
from Mathworks web page [54].

7.2 Properties
We use the properties listed in Table 6 for evaluation. ϕ1–ϕ6

are variants of formulas adapted from [55]. We modified the
original formula slightly to make them finite future reach
safety properties. ϕ7–ϕ9 are constructed purposely to test
behaviours of longer time than ϕ1–ϕ6. Therefore, for ϕ1–ϕ6,
the behaviour of the system from the start to 30 seconds
after is simulated, while for ϕ7–ϕ9, the behaviour of the
system from the start to 100 seconds after is simulated.

ShiftLogic

Transmission

Engine

VehicleBrake

Throttle

Gear

Engine RPM

Impeller Torque

Transmission RPM

Output Torque
Vehicle Speed

Fig. 4: The AT model
TABLE 6: The list of the evaluated properties on AT.

id Formula
ϕ1 �ω ≤ ω
ϕ2 �(v ≤ v ∧ ω ≤ ω)
ϕ3 �((g2 ∧ �[0,0.1]g1)→ �[0.1,1.0]¬g2)
ϕ4 �((¬g1 ∧ �[0,0.1]g1)→ �[0.1,1.0]g1)

ϕ5 �
∧4

i=1((¬gi ∧ �[0,0.1]gi )→ �[0.1,1.0]gi)
ϕ6 �(�[0,t1]ω ≤ ω → �[t1,t2]v ≤ v)
ϕ7 �v ≤ v
ϕ8 � �[0,25] ¬(v ≤ v ≤ v)
ϕ9 �¬�[0,20](¬g4 ∧ ω ≥ ω)

In formulas ϕ1–ϕ9, v denotes the vehicle speed, ω de-
notes the engine speed and g1, . . . , g4 denote the gear states.
v and v denote the upper and lower bound of the vehicle
speed, respectively. Similarly, ω denotes the upper bound of
the engine speed. We use different v and ω for each property.
These parameters are set based on experiments, to make
falsification possible yet challenging.

ϕ1 means that we want to limit the engine speed to
the limit ω. ϕ2 limits the vehicle speed and the engine
speed simultaneously. We use v = 170.0 and ω = 4770.0.
ϕ3–ϕ5 are properties for gear movement. We changed the
properties from the original paper by replacing the next
operator Xp to �[0,0.1] and the open time interval (0, 2.5]
to the closed interval [0.1, 1.0]. The reason of this change
is to remove the dependency to the time interval used to
calculate robustness from the properties. We use the time
interval [0.1, 1.0] instead [0.1, 2.5] to increase the difficulties
of falsifying the formulas. ϕ3 states that once the gear is
moved from g2 to g1, the gear never returns to g2 until
1 second passes. ϕ4 states that the gear is changed to g1,
then it stays at g1 until 1 second passes. The formula ϕ5

is the conjunction of ϕ3-like properties for all gear states
g1, . . . , g4.

We rewrite ϕ6 to a finite future reach safety property
and change the statement to “if the engine speed does not
exceed ω = 4550.0 continuously until t1 = 10 seconds, the
vehicle speed never exceeds v = 160.0 from t1 = 10 second
to t2 = 20 second.

ϕ7 states that the vehicle speed never exceeds the upper
limit of the speed v = 160. ϕ8 states that the vehicle speed
v cannot satisfy the constraint v = 70 ≤ v ≤ v = 80 in
25 second continuously. ϕ9 states that it is impossible to
continuously maintain faster than the limit engine speed
ω = 3100 without simultaneously going to gear state g4.

7.3 Experiment settings
For each given property, we run the falsification procedure
100 times. For each falsification procedure, we execute sim-
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TABLE 7: Success rates of falsifying AT model

A3C DDQN RAND CE SA
1 5 10 1 5 10 1 5 10 1 5 10 1 5 10

ϕ1 62 55 73 100 56 4 0 5 26 5 22 13 2 14 11
ϕ2 60 47 74 97 61 6 0 3 27 0 21 6 0 20 20
ϕ3 70 0 0 47 0 0 100 0 0 75 0 0 26 0 0
ϕ4 74 0 0 51 0 0 100 0 0 86 0 0 22 0 0
ϕ5 100 2 0 100 0 0 100 0 0 100 0 0 100 0 0
ϕ6 66 63 76 100 100 100 0 39 100 0 95 100 0 21 84
ϕ7 37 41 42 41 96 100 0 0 0 0 0 0 0 0 0
ϕ8 27 25 34 94 100 100 100 100 100 100 99 97 32 79 87
ϕ9 37 51 55 72 100 92 0 2 23 0 1 11 0 0 8

TABLE 8: Median number of episodes when falsification succeeds on AT

A3C DDQN RAND CE SA
1 5 10 1 5 10 1 5 10 1 5 10 1 5 10

ϕ1 27 23 35 26 94.5 107 – 120 84 67 68 88 109 137 85
ϕ2 18.5 31 30 27 93 115 – 148 85 – 74 58 – 119 122
ϕ3 8.5 – – 62 – – 22 – – 9 – – 16 – –
ϕ4 6 – – 40 – – 25 – – 8 – – 52 – –
ϕ5 1 128 – 2 – – 1 – – 1 – – 1 – –
ϕ6 3 4 3 7.5 3.5 3 – 92 25 – 36 13 – 117 78
ϕ7 31 17 16 89 57.5 82 – – – – – – – – –
ϕ8 68 58 21 55.5 60.5 26 10 26 28 10 21 15 67 55 42
ϕ9 12 11 16 25 20.5 26 – 85 101 – 51 22 – – 124

TABLE 9: Relative effect size measure comparing to random inputs on AT

A3C DDQN CE SA
1 5 10 1 5 10 1 5 10 1 5 10

ϕ1

1 0.190 0.225 0.135 0.001 0.220 0.480 0.475 0.390 0.435 0.490 0.430 0.445
5 0.205 0.241 0.148 0.003 0.244 0.505 0.500 0.412 0.459 0.515 0.456 0.470
10 0.285 0.324 0.225 0.048 0.356 0.611 0.605 0.514 0.565 0.620 0.566 0.576

ϕ2

1 0.200 0.265 0.130 0.015 0.195 0.470 0.500 0.395 0.470 0.500 0.400 0.400
5 0.207 0.273 0.136 0.016 0.206 0.485 0.515 0.407 0.484 0.515 0.414 0.414
10 0.294 0.370 0.222 0.072 0.336 0.606 0.635 0.524 0.604 0.635 0.540 0.542

ϕ3

1 0.556 0.999 0.999 0.878 0.999 0.999 0.471 0.999 0.999 0.863 0.999 0.999
5 0.150 0.500 0.500 0.265 0.500 0.500 0.125 0.500 0.500 0.370 0.500 0.500
10 0.150 0.500 0.500 0.265 0.500 0.500 0.125 0.500 0.500 0.370 0.500 0.500

ϕ4

1 0.507 0.999 0.999 0.824 0.999 0.999 0.369 0.999 0.999 0.910 0.999 0.999
5 0.130 0.500 0.500 0.245 0.500 0.500 0.070 0.500 0.500 0.390 0.500 0.500
10 0.130 0.500 0.500 0.245 0.500 0.500 0.070 0.500 0.500 0.390 0.500 0.500

ϕ5

1 0.542 0.999 0.999 0.837 0.999 0.999 0.520 0.999 0.999 0.561 0.999 0.999
5 0.001 0.490 0.500 0.001 0.500 0.500 0.001 0.500 0.500 0.001 0.500 0.500
10 0.001 0.490 0.500 0.001 0.500 0.500 0.001 0.500 0.500 0.001 0.500 0.500

ϕ6

1 0.170 0.185 0.120 0.001 0.001 0.001 0.500 0.025 0.001 0.500 0.395 0.080
5 0.284 0.287 0.191 0.028 0.016 0.017 0.695 0.115 0.038 0.695 0.599 0.258
10 0.535 0.512 0.369 0.163 0.102 0.116 0.999 0.633 0.292 0.999 0.968 0.808

ϕ7

1 0.315 0.295 0.290 0.295 0.020 0.001 0.500 0.500 0.500 0.500 0.500 0.500
5 0.315 0.295 0.290 0.295 0.020 0.001 0.500 0.500 0.500 0.500 0.500 0.500
10 0.315 0.295 0.290 0.295 0.020 0.001 0.500 0.500 0.500 0.500 0.500 0.500

ϕ8

1 0.960 0.948 0.879 0.931 0.882 0.688 0.433 0.657 0.604 0.899 0.872 0.852
5 0.905 0.903 0.805 0.690 0.650 0.429 0.194 0.379 0.317 0.865 0.713 0.625
10 0.923 0.916 0.823 0.748 0.725 0.486 0.245 0.432 0.372 0.875 0.759 0.678

ϕ9

1 0.315 0.245 0.225 0.140 0.001 0.040 0.500 0.495 0.445 0.500 0.500 0.460
5 0.323 0.253 0.234 0.150 0.008 0.048 0.510 0.505 0.455 0.510 0.510 0.470
10 0.401 0.314 0.293 0.200 0.024 0.080 0.615 0.609 0.550 0.615 0.615 0.576

ulation episodes up to 200 times and measure the number
of simulation episodes required to falsify the property. If
the property cannot be falsified within 200 episodes, the
procedure fails. To analyze the effect of ∆T has on the
performance of each algorithm, we vary ∆T among {1, 5,
10}. Similar to the CARS-model, we use linear interpolation
for all methods.

7.4 Evaluation results
The summary statistics for success rate and the median
number of episodes required for falsification are shown in
Table 7 and Table 8, respectively. Fig. 5 shows the distri-
bution of number of episodes required to falsify the model
for ∆T = 1 in a box plot. In Table 8, “–” indicates that all
falsification attempts fail. Table 8 shows that DDQN with

∆T = 1 is relatively the most stable, though it may not
always be the best, method.

Table 9 shows relative effect size measures of each com-
bination of method (A3C, DDQN, CE, SA) and sampling
rate ∆T = 1, 5, 10, shown in columns, against RAND with
∆T = 1, 5, 10, shown in rows. We further compare the
DRL-based methods, i.e., A3C and DDQN, with methods
implemented in S-Taliro, i.e., CE and SA, and the relative
effect size measure results are shown in Table 10.

By statistical analysis, we can observe from Table 9 that
A3C and DDQN outperform RAND for ϕ1, ϕ2, ϕ6, ϕ7, ϕ9

for most cases. While RAND shows better performance
for for property ϕ3, ϕ4, ϕ5, ϕ8 than all the other methods,
i.e., A3C and DDQN, CE and SA. This may suggest that
ϕ3, ϕ4, ϕ5, ϕ8 do not have an easy structure to be exploit for



11

0 50 100 150 200

Number of simulations

P
ro

p
e

rt
ie

s

Algorithm

A3C

DDQN

RAND

CE

SA

ϕ1

ϕ2

ϕ3

ϕ4

ϕ5

ϕ6

ϕ7

ϕ8

ϕ9

Fig. 5: number of episodes to falsify AT model (∆T = 1)

TABLE 10: Relative effect size measure comparing to S-
Taliro on AT model

A3C DDQN
1 5 10 1 5 10

ϕ1

1 0.206 0.242 0.149 0.004 0.245 0.505
CE 5 0.270 0.307 0.212 0.032 0.341 0.592

10 0.234 0.272 0.176 0.017 0.287 0.545
1 0.196 0.231 0.141 0.002 0.229 0.490

SA 5 0.233 0.268 0.171 0.011 0.284 0.549
10 0.226 0.262 0.167 0.012 0.275 0.535

ϕ2

1 0.200 0.265 0.130 0.015 0.195 0.470
CE 5 0.271 0.344 0.199 0.043 0.312 0.578

10 0.220 0.287 0.147 0.021 0.227 0.501
1 0.200 0.265 0.130 0.015 0.195 0.470

SA 5 0.259 0.331 0.182 0.034 0.284 0.570
10 0.255 0.327 0.175 0.023 0.281 0.569

ϕ3

1 0.524 0.875 0.875 0.772 0.875 0.875
CE 5 0.150 0.500 0.500 0.265 0.500 0.500

10 0.150 0.500 0.500 0.265 0.500 0.500
1 0.275 0.630 0.630 0.414 0.630 0.630

SA 5 0.150 0.500 0.500 0.265 0.500 0.500
10 0.150 0.500 0.500 0.265 0.500 0.500

ϕ4

1 0.561 0.930 0.930 0.823 0.930 0.930
CE 5 0.130 0.500 0.500 0.245 0.500 0.500

10 0.130 0.500 0.500 0.245 0.500 0.500
1 0.215 0.610 0.610 0.355 0.610 0.610

SA 5 0.130 0.500 0.500 0.245 0.500 0.500
10 0.130 0.500 0.500 0.245 0.500 0.500

ϕ5

1 0.523 0.999 0.999 0.823 0.999 0.999
CE 5 0.001 0.490 0.500 0.001 0.500 0.500

10 0.001 0.490 0.500 0.001 0.500 0.500
1 0.475 1.000 0.999 0.723 0.999 0.999

SA 5 0.001 0.490 0.500 0.001 0.500 0.500
10 0.001 0.490 0.500 0.001 0.500 0.500

ϕ6

1 0.170 0.185 0.120 0.001 0.001 0.001
CE 5 0.503 0.461 0.305 0.045 0.034 0.035

10 0.572 0.561 0.435 0.277 0.168 0.198
1 0.170 0.185 0.120 0.001 0.001 0.001

SA 5 0.229 0.239 0.159 0.016 0.011 0.012
10 0.432 0.418 0.286 0.069 0.052 0.054

ϕ7

1 0.315 0.295 0.290 0.295 0.020 0.001
CE 5 0.315 0.295 0.290 0.295 0.020 0.001

10 0.315 0.295 0.290 0.295 0.020 0.001
1 0.315 0.295 0.290 0.295 0.020 0.001

SA 5 0.315 0.295 0.290 0.295 0.020 0.001
10 0.315 0.295 0.290 0.295 0.020 0.001

ϕ8

1 0.968 0.956 0.893 0.960 0.914 0.746
CE 5 0.936 0.923 0.836 0.840 0.791 0.548

10 0.936 0.923 0.844 0.890 0.827 0.613
1 0.525 0.536 0.477 0.180 0.155 0.123

SA 5 0.762 0.770 0.674 0.406 0.394 0.233
10 0.825 0.825 0.723 0.542 0.519 0.308

ϕ9

1 0.315 0.245 0.225 0.140 0.001 0.040
CE 5 0.319 0.248 0.228 0.143 0.001 0.043

10 0.367 0.292 0.274 0.203 0.049 0.096
1 0.315 0.245 0.225 0.140 0.001 0.040

SA 5 0.315 0.245 0.225 0.140 0.001 0.040
10 0.344 0.268 0.248 0.160 0.008 0.054

Fuel Control System

Verification and Validation stub system

Pedal Angle

Engine Speed

A/F A/F ref

Verification 
measurement

Mode

Fig. 6: Power train control (PTC) model

faster falsification than random input generation.
We can also observe from Table 10 that if ∆T = 1, DDQN

significantly outperforms CE and SA for ϕ1, ϕ2, ϕ6, ϕ7, ϕ9.
For these properties, other ∆T are also good except for
the case of ϕ1, in which ∆T = 10 has no difference to
or slightly underperforms CE and SA. A3C outperforms
CE and SA for all ∆T to falsify ϕ1, ϕ2, ϕ7, ϕ9. However,
to falsify ϕ6 A3C has no statistically significant advantage
over CE and SA. For ϕ3, ϕ4, ϕ5, we cannot find statistically
significant difference between A3C, DDQN and CE, SA.
All difference for ϕ3, ϕ4, ϕ5 seems to be caused by the
differences of ∆T , rather than different methods. For ϕ8, CE
significantly outperforms DDQN and SA with all ∆T . We
also find that ϕ9 is falsified by keeping full throttle and full
braking continuously. This means that ϕ9 is easy to falsify
yet only RL-based methods can falsify ϕ9.

The results may suggest that if the property has a struc-
ture which can be exploit for fast falsification, reinforcement
learning is advantageous to general purpose robustness
guided falsification, and if there is no such structure, ran-
dom inputs are sufficient for falsification.

8 EVALUATION USING PTC MODEL

8.1 Model description
We also evaluate our method with a widely used model,
the power train controller (PTC) model provided by Toyota
Technical Center [56]. This model presents a controller for
air-fuel (A/F) ratio for an internal combustion engine. Fig. 6
shows the architecture of PTC-model. The model takes the
pedal angle and the engine speed as inputs. It outputs the
verification measurement, which indicates the control error,
and operational mode. The PTC system consists of two
parts, i.e., the Fuel Control System (FCS) and the Verification
and Validation stub system (VVSS). FCS takes pedal angle
and the engine speed as inputs, computes the ideal A/F
ratio and control the physical system to achieve this A/F
ratio. It also models the engine dynamics to predict the real
A/F ratio. FCS has two outputs, the A/F which indicates
the real A/F ratio, and the A/F ref which indicates the goal
A/F ratio set by the controller. VVSS takes A/F and A/F
ref as input, and computes the control error and outputs as
verification measurement.

There are 4 modes, i.e., startup, normal, power and fault,
in the system. The system is in the startup mode within the
first few seconds. Then the system enters the normal mode
and stays at the normal mode if the pedal angle is within
(8.8◦, 70◦). If the pedal angle exceeds 70◦, then the system
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TABLE 11: The list of the evaluated properties on PTC
model.

id Formula
ϕ26 �[11,50]|µ| ≤ 0.2
ϕ27 �[11,50](rise ∨ fall =⇒ �[1,5]|µ| ≤ 0.15)
ϕ30 �[11,50]µ ≥ −0.25
ϕ31 �[11,50]µ ≤ 0.2
ϕ32 �[11,50](power ∧ �[0,0.1]normal =⇒ �[1,5]|µ| ≤ 0.2)
ϕ33 �[11,50](power =⇒ |µ| ≤ 0.2)
ϕ34 �[0,50](sensrfail =⇒ �[1,5]|µ| ≤ 0.15)

enters the power mode. Finally, if a sensor fails, the system
enters the fault mode.

8.2 Properties

We adopt formulas (26), (27), (30)–(34) defined in the orig-
inal paper [56]. For simplicity, we use µ to represent Veri-
fication Measurement. The predicate “normal” means that
the system operates under the normal mode. The predicate
“power” means that the system operates under the power
mode. The predicate “sensor fail” means that a sensor fail-
ure event occurs. The predicate “rise” means the pedal angle
jumps up to a high value from a low value. The predicate
“fall” means the pedal angle falls down from a high value
to a low value.

We make several modifications to the original formulas.
First, we generally increase the tolerance for µ to make
falsification harder. We also modify the definitions of rise
and fall. In the original paper [56], the input to the system
is limited to a pulse train signal. Our approach uses a piece-
wise constant function for the input, it is difficult to find
the input which satisfies the constraints originally used.
Therefore, we relax the condition and define

rise ≡ (θ ≤ 25◦) ∧ �[0,0.1](θ ≥ 45◦) (38)
fall ≡ (θ ≥ 45◦) ∧ �[0,0.1](θ ≤ 25◦). (39)

We also change open time intervals (e.g., �(0,ε)) in the origi-
nal work to closed time intervals (e.g., �[0,0.1]). Constants in
the properties are set as τs = 11, T = 50, η = 1, ξ = 10,
ε = 0.1. The other parameters remain the same.

ϕ26 states that the control error is within 0.2. ϕ27

states that even if the large change of the pedal angle
occurs, the control error dissipates and becomes smaller
than 0.15 within 1 second and remains until 5 seconds
later. To falsify ϕ26 and ϕ27, we force the pedal angle
to be within [8.8◦, 70◦] so that the system stays in the
normal mode. ϕ30 and ϕ31 intend to ensure that the control
error remains reasonable even under the low accuracy of
sensors and actuators. These formulas are tested under the
extreme tolerance c23 = 1.05, c24 = 1.01, c25 = 1.05 and
c23 = 0.95, c24 = 0.99, c25 = 0.95 respectively. These
parameters cause the steady state to real A/F ratio. We set
the pedal angle within [8.8◦, 70◦] as ϕ26, ϕ27 to ensure the
normal mode of operation. ϕ32 states the requirement for
the transition out of the power mode. Now we assume that
the pedal angle is within [8.8◦, 90◦] and when the system
exits from the power mode, the control error dissipates fast
and becomes smaller than 0.2 after 1 second and remains
within 5 second. ϕ33 states the requirement for the control
error when the system is under the power mode. Similarly,
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Fig. 7: number of episodes required to falsify PTC model

TABLE 12: Success rates to falsify PTC model

Properties A3C DDQN RAND CE SA

ϕ26 90 85 100 100 100
ϕ27 45 0 100 80 80
ϕ30 70 15 100 95 65
ϕ31 100 100 100 100 100
ϕ32 5 0 75 40 15
ϕ33 65 75 100 100 95
ϕ34 20 0 85 95 60

we assume that the pedal angle is within [70◦, 90◦] to en-
force the system into the power mode. Finally, ϕ34 states the
requirement when the sensor failure occurs. We inject the
sensor failure to the model 15 seconds after the beginning
of the simulation.

8.3 Experiment settings
For each given property, we run the falsification procedure
20 times due to the time consuming nature of the PTC
model. For each falsification procedure, we execute simu-
lation episodes up to 200 times and measure the number
of simulation episodes required to falsify the property. If
the property cannot be falsified within 200 episodes, the
procedure fails. We choose ∆T = 5 because the original
paper specifies that the input is the pulse period ζ , where
10 ≤ ζ ≤ 30. We do not use the periodic pulse for the input
but we assume that the change of the input only occurs
every ζ/2 seconds. We generate a piecewise constant for
inputs because an input specified by the original paper is a
pulse. In the original paper, the engine speed is constant but
we also change the engine speed during simulation since
reinforcement learning methods cannot synthesize fixed
parameters. ∆T and the interpolation method for the engine
speed is same as the pedal angle.

8.4 Evaluation results
Table 12 shows the success rate of falsification within 200
simulations for each formula and method. Table 13 shows
the median number required to falsify the model for each
formula and method. If all falsification attempts fail, the
median number of episodes is indicated by –. Fig. 7 shows
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TABLE 13: Median number of episodes when falsification
succeeds

Properties A3C DDQN RAND CE SA

ϕ26 3 22 3.5 5.5 2.5
ϕ27 30 – 48 53 72
ϕ30 7 98 21.5 22 44
ϕ31 3 8 2.5 3 1
ϕ32 11 – 56 55.5 57
ϕ33 3 40 5.0 4.5 11.0
ϕ34 17 – 81.0 59.0 81.0

TABLE 14: Relative effect size measure comparing to ran-
dom inputs on PTC model

Properties A3C DDQN CE SA

ϕ26 0.543 0.964 0.624 0.456
ϕ27 0.755 0.999 0.634 0.632
ϕ30 0.543 0.995 0.595 0.840
ϕ31 0.628 0.794 0.522 0.356
ϕ32 0.831 0.875 0.680 0.804
ϕ33 0.679 0.979 0.455 0.693
ϕ34 0.790 0.925 0.434 0.657

the distributions of number of episodes required to falsify
the model for each formula and method in a box plot. As we
can see, random inputs show the most stable performance
and for most properties, baselines outperform our methods.
For RL-based methods, A3C is better than DDQN.

The analysis of the relative effect size measure veri-
fies this observations. Table 14 indicates that all methods
under-perform or has no significant difference from RAND.
Further, DDQN consistently under-performs RAND for all
properties. Table 15 shows the comparison of RL methods
with CE and SA. For all cases, RL methods under-perform
or has no significant difference from CE and SA.

The reasons of bad performance of reinforcement learn-
ing methods could be the combination of the following facts.

1) Lack of a learnable structure in the model;
2) lack of output of internal states from the model; and
3) fast dynamics of the system compared to the sam-

pling interval ∆T = 5.

The good performance of RAND suggests that the model
behaviour may not have an easily learnable structure. More-
over, the PTC model only outputs the control error and the
operational mode, and does not allow observing of internal
dynamics of the system. This prevents DRL algorithms
from learning knowledge. This could also explain the better
performance of A3C compared to DDQN. Our implemen-
tation of A3C uses LSTM neural architecture which can
learn a structure of sequential data. Using LSTM would
help to learn the model behaviours based on the context
information. On the contrary, DDQN only uses a feed-
forward network, the input of which is the observation of
the previous step. Therefore, DDQN cannot “guess” the
current state of the system from the sequence of previous
observations. Finally, the control error, which is the only
observable state of the system, usually converges to 0 in
much shorter time than ∆T = 5. Therefore, it is difficult to
learn knowledge from the model observations.

TABLE 15: Relative effect size measure comparing to S-
Taliro on PTC model

Properties Base lines A3C DDQN

ϕ26
CE 0.429 0.850
SA 0.569 0.874

ϕ27
CE 0.653 0.900
SA 0.655 0.900

ϕ30
CE 0.491 0.956
SA 0.332 0.761

ϕ31
CE 0.607 0.772
SA 0.740 0.843

ϕ32
CE 0.665 0.700
SA 0.546 0.575

ϕ33
CE 0.722 0.983
SA 0.575 0.769

ϕ34
CE 0.828 0.975
SA 0.670 0.800

9 ANALYSIS

In this section, we analyse the factors that may affect the
evaluation results of our approach and discuss the observa-
tions in detail.

9.1 Analysis of impact of log-sum-exp approximation
The log-sum-exp approximation of max (29) has a more
general form, i.e.,

max(x1, . . . , xn) ∼ 1

α
log

{
n∑
i=1

eαxi

}
(40)

for α > 0. Larger α provides better approximation, while
the approximation is less smooth respect to x1, . . . , xn and
thus the reward is harder to learn. To investigate the impact
of different α on the experiment results, we evaluate the
CARS model on α = 0.25, 0.5, 1, 2, 4 and report the results.
Fig. 8 shows the box diagram indicating number of episodes
needed to falsify the formulas. Table 16 shows the success
rate of falsification for each combination of a formula, RL
method (A3C and DDQN) and α. Similarly, Table 17 shows
the median number of episodes when the falsification is
successful, on different combinations of formula, RL method
(A3C and DDQN) and α.

As can be seen from Fig. 8, Table 16 and Table 17,
there is no consistent tendency of performance for different
α. Indeed, Tukey’s method (all-pairs comparison) using
nparcomp does not find statistically significant differences
between any different α for all pairs of formulas and RL
algorithms. Therefore, we conclude that there is not signifi-
cant impact of different α to the performance of our method
and we set α to 1 for simplicity.

9.2 Execution time
Our work utilizes the number of simulations, rather than ex-
ecution time, as the performance measurement. We evaluate
the effects that different methods, ∆T and properties, have
on execution time. The evaluation results justify our deci-
sions on using number of simulations as the performance
measurement.

Fig. 9 shows the execution time per one simulation run
for each combination of algorithms, ∆T and properties
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Fig. 8: Number of episodes required to falsify the model
using different α on CARS

TABLE 16: Success rate of falsifying the model using differ-
ent α on CARS

α 0.125 0.25 0.5 1 2 4

ϕ1-A3C 71 73 70 66 73 70
ϕ1-DDQN 100 100 100 100 100 100
ϕ2-A3C 76 85 83 78 78 74
ϕ2-DDQN 98 100 99 100 99 100
ϕ3-A3C 82 76 67 73 78 75
ϕ3-DDQN 57 56 61 59 54 48
ϕ4-A3C 14 13 24 16 15 19
ϕ4-DDQN 29 34 35 36 33 26
ϕ5-A3C 65 68 68 64 57 67
ϕ5-DDQN 95 97 97 100 100 100

ϕ1, . . . , ϕ9 for the AT model. Execution time differs between
RL based algorithms and S-TaLiRo based algorithms. This is
expected since S-Taliro is implemented with Matlab and C,
while RL based algorithms are implemented with Matlab,
Python and C. According to Mathworks support center,
calling Python prevents optimization. There is no significant
difference between RL based algorithms and RAND. This
suggests that the overhead of machine learning component
contributes little to the total execution time, and simu-
lation component dominates execution time. This is also
supported by the fact that there is no difference on time
consumptions between different ∆T . If machine learning
component has large influence, small ∆T increases learning
iterations and thus should result in slower execution. As for
properties, there is no influence on performance by proper-
ties under falsification, except ϕ5. The result of ϕ5 is caused
by initialization overhead to load a new simulation model,
because ϕ5 needs only a small number of simulations to
falsify and the initialization overhead dominates the exe-
cution time. Interestingly, there is no significant difference
between ϕ1−ϕ4, ϕ6 and ϕ7−ϕ9. For ϕ7−ϕ9, we use longer
simulation time. This may suggest that execution time is
further dominated by initialization of each simulation.

The evaluation results show that there is large variance
of execution time among different combination of methods,
∆T and property under falsification. This can be explained
by the fact that we are using a single multicore machine

TABLE 17: Median number of episodes when falsification
succeeds using different α on CARS

α 0.125 0.25 0.5 1 2 4

ϕ1-A3C 4 5 4 3 4 4
ϕ1-DDQN 6 6 5 7 5 5.5
ϕ2-A3C 3 4 4 3 3 3
ϕ2-DDQN 6 9 5 7 8 8
ϕ3-A3C 4 5 4 6 4 4
ϕ3-DDQN 84 81.5 64 91 81.5 64.5
ϕ4-A3C 57.5 49 104.5 58 49 59
ϕ4-DDQN 117 115.5 102 107 108 68
ϕ5-A3C 15 9.5 9.5 11 8 13
ϕ5-DDQN 11 12 8 10.5 13 9
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Fig. 9: Difference of execution time depending on algorithm,
∆T and properties on AT

for the experiment, running benchmarks simultaneously,
therefore execution time becomes non-deterministic. Since
we observe that the simulation time dominates the to-
tal execution time, we use the number of simulations to
measure performance of each method to avoid the non-
determinism caused by the experiment environment as well
as programming languages, etc.

9.3 Observable states

Reinforcement learning algorithms often, although not al-
ways, assume that the states of the environment are com-
pletely observable from the agent. Therefore, it is expected
that the availability of the state information of the system
influences the performance of reinforcement learning based
methods.

The experimental results support this expectation. This
is most evidenced in the experiment of the CARS model,
in which we measure the performance of two variants of
reinforcement learning, i.e., the white-box RL approaches
and the black-box RL approaches. A white-box RL can ob-
serve all system states while a black-box RL cannot observe
system states at all, and only obtains the reward corre-
sponding to the system states. As shown in Table 4, black-
box RLs have the same performance as RAND and often
under-perform CE and SA. White-box RLs almost always
outperform CE, SA and RAND. The non-observability of
system states also may cause bad performance of RL based
methods for the PTC model, because the PTC model only
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allows observation of the control error and the operational
mode. Similarly, for ϕ3 and ϕ4 of the ATC model, the bad
performance is likely because ϕ3 and ϕ4 concern events
which occur in a short period of time.

9.4 Property to be falsified
Similar to the observability of states, we are interested to
understand whether there are properties, on which the rein-
forcement learning methods consistently outperforms other
methods. However, from the experimental results, we can-
not find any consistent description of such a property. Our
main observation is, whenever SA or CE outperforms RL
methods, RAND almost always outperforms RL methods,
which is shown in the case of ϕ3 and ϕ4 of the AT model
and all properties of the PTC model. Moreover, in such
cases, RAND outperforms or has no statistically significant
difference with SA and CE. This suggests that there are two
kinds of properties, one can be efficiently falsified by RAND
and the other requires a structured input to be falsified. RL
based methods show better performance on the latter.

9.5 Model
Dynamics of a model seems to contribute to the difference
of performance between A3C and DDQN. For the CARS
and the PTC models, A3C generally has better performance
compared to DDQN. For AT model, DDQN generally has
better performance compared to A3C. A3C and DDQN are
competing methods and has similar performance. However,
we use them in different settings. We use A3C with a single
thread. A3C is supposed to be used in a multi-threaded
environment to stabilize learning. Therefore, our setting
may adversely affect the performance of A3C. On the other-
hand, our implementation of A3C uses LSTM, which can
memorize past observations and rewards. Because our im-
plementation of DDQN uses a simple feed forward network
from the current state, if the system behaviour depends on
the past states, A3C has an advantage. For example, the
behaviour of the CARS model depends on velocity of each
car, which can only be computed by using past observations.

9.6 The ∆T

We investigate the effect of sampling interval ∆T on perfor-
mances using the AT model. The results show that there
is no consistent effects of ∆T . It may be expected that
small ∆T gives advantages to reinforcement learning, since
small ∆T improves the opportunities to learn and control
the system. However, it seems difficult to make an agent
generate a constant system input for a long time. Therefore,
small ∆T can adversely affect the performance if the system
input must be kept constant for a long time in order to falsify
the system. To conclude, Tables 2, 3, 7, 8, 12 and 13 suggest
that reinforcement learning methods may not always be
the best methods, but both A3C and DDQN show stable
performance regardless of the property to be falsified for all
models. For some cases, cross entropy method (CE) outper-
forms reinforcement learning based methods. However CE
is not stable. Moreover, we observe that when reinforcement
learning methods under-perform CE and SA, then RAND
outperforms them for almost all cases. The results of relative

effect size measure also support these analysis. We can claim
(with our experiment results) that reinforcement learning
based methods provides the most stable performance. For
some situations in which RAND is good enough, RL based
method may not show its advantages. Based on the above
observations, we believe that an adaptive method, which
combines the reinforcement learning with RAND may be a
good direction to explore.

10 CONCLUSION AND FUTURE WORK

In this paper, we propose a new method of falsification
of CPS using reinforcement learning. Our method focuses
on safety properties. We theoretically show how to format
a CPS falsification problem into a reinforcement learning
problem. We also experimentally investigate and compare
the performance of the proposed methods with three base-
line methods, i.e., uniformly random sampling, cross en-
tropy and simulated annealing. To provide a result with
good confidence, we employ a rigorous statistical method
called relative effect size measure for experiment results
analysis. Through a thorough analysis on the experiment
results, we identify the factors which make reinforcement
learning approaches outperform baselines. The first factor
is the availability of the system states to the reinforcement
learning agent. The other factor is the existence of a structure
in the falsifying input.

As future works, there are three directions that we would
like to explore. First, we would like to further explore the
criteria/scenarios in which reinforcement learning works
better than uniform random input. We are also interested
to extend our method to non-safety properties. Second,
technically finding practical ways to tune deep learning
parameters may help improve the effectiveness of our ap-
proach. Deep learning tends to have large number of pa-
rameters, which must be tuned. Finally, we want to extend
our experimental study to involve more models, properties
and different methods.

REFERENCES

[1] H. Abbas and G. E. Fainekos, “Convergence proofs for simulated
annealing falsification of safety properties,” in 50th Annual
Allerton Conference on Communication, Control, and Computing,
Allerton 2012, Allerton Park & Retreat Center, Monticello, IL, USA,
October 1-5, 2012. IEEE, 2012, pp. 1594–1601. [Online]. Available:
https://doi.org/10.1109/Allerton.2012.6483411

[2] H. Abbas, G. Fainekos, S. Sankaranarayanan, F. Ivančić,
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[29] T. Dreossi, T. Dang, A. Donzé, J. Kapinski, X. Jin, and J. V.

Deshmukh, “Efficient guiding strategies for testing of temporal
properties of hybrid systems,” in NASA Formal Methods -
7th International Symposium, NFM 2015, Pasadena, CA, USA,
April 27-29, 2015, Proceedings, ser. Lecture Notes in Computer
Science, K. Havelund, G. J. Holzmann, and R. Joshi, Eds.,
vol. 9058. Springer, 2015, pp. 127–142. [Online]. Available:
https://doi.org/10.1007/978-3-319-17524-9 10

[30] T. Akazaki, S. Liu, Y. Yamagata, Y. Duan, and J. Hao, “Falsification
of cyber-physical systems using deep reinforcement learning,”
in Formal Methods - 22nd International Symposium, FM 2018, Held
as Part of the Federated Logic Conference, FloC 2018, Oxford, UK,
July 15-17, 2018, Proceedings, ser. Lecture Notes in Computer
Science, K. Havelund, J. Peleska, B. Roscoe, and E. P. de Vink,
Eds., vol. 10951. Springer, 2018, pp. 456–465. [Online]. Available:
https://doi.org/10.1007/978-3-319-95582-7\ 27

[31] G. De Giacomo, L. Iocchi, M. Favorito, and F. Patrizi, “Rein-
forcement learning for ltlf/ldlf goals,” CoRR, vol. abs/1807.06333,
2018. [Online]. Available: http://arxiv.org/abs/1807.06333

[32] A. Camacho, O. Chen, S. Sanner, and S. A. McIlraith,
“Non-markovian rewards expressed in LTL: guiding search
via reward shaping,” in Proceedings of the Tenth International
Symposium on Combinatorial Search, SOCS 2017, 16-17 June 2017,
Pittsburgh, Pennsylvania, USA., A. Fukunaga and A. Kishimoto,
Eds. AAAI Press, 2017, pp. 159–160. [Online]. Available: https:
//aaai.org/ocs/index.php/SOCS/SOCS17/paper/view/15811

[33] Decision-Making with Non-Markovian Rewards: From LTL to
automata-based reward shaping, 2017, see also University of Toronto
Technical Report CSRG-632. [Online]. Available: http://www.cs.
toronto.edu/∼sheila/publications/cam-etal-rldm17.pdf

[34] X. Li, C. I. Vasile, and C. Belta, “Reinforcement learning with
temporal logic rewards,” in 2017 IEEE/RSJ International Conference
on Intelligent Robots and Systems, IROS 2017, Vancouver, BC, Canada,
September 24-28, 2017. IEEE, 2017, pp. 3834–3839. [Online].
Available: https://doi.org/10.1109/IROS.2017.8206234

[35] D. Aksaray, A. Jones, Z. Kong, M. Schwager, and C. Belta,
“Q-learning for robust satisfaction of signal temporal logic
specifications,” in 55th IEEE Conference on Decision and
Control, CDC 2016, Las Vegas, NV, USA, December 12-
14, 2016. IEEE, 2016, pp. 6565–6570. [Online]. Available:
https://doi.org/10.1109/CDC.2016.7799279

[36] A. Jones, D. Aksaray, Z. Kong, M. Schwager, and C. Belta, “Robust
satisfaction of temporal logic specifications via reinforcement
learning,” CoRR, vol. abs/1510.06460, 2015. [Online]. Available:
http://arxiv.org/abs/1510.06460

[37] H. Ho, J. Ouaknine, and J. Worrell, “Online monitoring
of metric temporal logic,” in Runtime Verification - 5th
International Conference, RV 2014, Toronto, ON, Canada, September



17

22-25, 2014. Proceedings, ser. Lecture Notes in Computer
Science, B. Bonakdarpour and S. A. Smolka, Eds., vol.
8734. Springer, 2014, pp. 178–192. [Online]. Available: https:
//doi.org/10.1007/978-3-319-11164-3 15

[38] E. M. Clarke, T. A. Henzinger, H. Veith, and R. Bloem, Handbook of
model checking. Springer, 2018.

[39] G. E. Fainekos and G. J. Pappas, “Robustness of temporal
logic specifications,” in Formal Approaches to Software Testing
and Runtime Verification, First Combined International Workshops,
FATES 2006 and RV 2006, Seattle, WA, USA, August 15-16,
2006, Revised Selected Papers, ser. Lecture Notes in Computer
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